Martins AC, Urbano MR, Almeida Lopes ACB, Carvalho MFH, Buzzo ML, Docea AO, et al. Blood cadmium levels and sources of exposure in an adult urban population in Southern Brazil. Environ Res. 2020;187:109618. https://doi.org/10.1016/j.envres.2020.109618.

Article 
PubMed 

Google Scholar
 

Blanco Muñoz J, Lope V, Fernández de Larrea-Baz N, Gómez-Ariza JL, Dierssen-Sotos T, Fernández-Tardón G, et al. Levels and determinants of urinary cadmium in general population in spain: Metal-MCC-Spain study. Environ Res. 2022;210:112959. https://doi.org/10.1016/j.envres.2022.112959.

Article 
PubMed 

Google Scholar
 

Moynihan M, Peterson KE, Cantoral A, Song PXK, Jones A, Solano-González M, et al. Dietary predictors of urinary cadmium among pregnant women and children. Sci Total Environ. 2017;575:1255–62. https://doi.org/10.1016/j.scitotenv.2016.09.204.

Article 
PubMed 

Google Scholar
 

Faroon O, Ashizawa A, Wright S, Tucker P, Jenkins K, Ingerman L, et al. Agency for toxic substances and disease registry (ATSDR) toxicological profiles. Toxicological profile for cadmium. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US); 2012.


Google Scholar
 

Hu J, Wang Z, Williams GDZ, Dwyer GS, Gatiboni L, Duckworth OW, et al. Evidence for the accumulation of toxic metal(loid)s in agricultural soils impacted from long-term application of phosphate fertilizer. Sci Total Environ. 2024;907:167863. https://doi.org/10.1016/j.scitotenv.2023.167863.

Article 
PubMed 

Google Scholar
 

Gao S, Dong Y, Jia Q, Wu S, Bai J, Cui C, et al. Hazards of toxic metal(loid)s: exploring the ecological and health risk in soil-crops systems with long-term sewage sludge application. Sci Total Environ. 2024;948:174988. https://doi.org/10.1016/j.scitotenv.2024.174988.

Article 
PubMed 

Google Scholar
 

Hernandez L, Probst A, Probst JL, Ulrich E. Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Sci Total Environ. 2003;312(1–3):195–219. https://doi.org/10.1016/s0048-9697(03)00223-7.

Article 
PubMed 

Google Scholar
 

Tägt J, Helte E, Donat-Vargas C, Larsson SC, Michaëlsson K, Wolk A, et al. Long-term cadmium exposure and fractures, cardiovascular disease, and mortality in a prospective cohort of women. Environ Int. 2022;161:107114. https://doi.org/10.1016/j.envint.2022.107114.

Article 
PubMed 

Google Scholar
 

Yimthiang S, Vesey DA, Pouyfung P, Khamphaya T, Gobe GC, Satarug S. Chronic kidney disease induced by cadmium and diabetes: a quantitative case-control study. Int J Mol Sci. 2023;24(10):9050. https://doi.org/10.3390/ijms24109050.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Martinez-Morata I, Schilling K, Glabonjat RA, Domingo-Relloso A, Mayer M, McGraw KE, et al. Association of urinary metals with cardiovascular disease incidence and all-cause mortality in the multi-ethnic study of atherosclerosis (MESA). Circulation. 2024;150(10):758–69. https://doi.org/10.1161/circulationaha.124.069414.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li Y, Jian Y, Zhou J, Zhang M, Zhou Y, Ge Y, et al. Molecular regulatory networks of microplastics and cadmium mediated hepatotoxicity from NAFLD to tumorigenesis via integrated approaches. Ecotoxicol Environ Saf. 2025;300:118431. https://doi.org/10.1016/j.ecoenv.2025.118431.

Article 
PubMed 

Google Scholar
 

Wu W, Zhang B, Zhao J, Hu W, Li Y, Feng Y, et al. Cadmium levels in maternal blood, placenta, and cord blood in relation to preeclampsia and fetal growth: a case-control study in China. Hypertens Res. 2025;48(4):1321–30. https://doi.org/10.1038/s41440-025-02122-1.

Article 
PubMed 

Google Scholar
 

Liu W, Zhang B, Huang Z, Pan X, Chen X, Hu C, et al. Cadmium body burden and gestational diabetes mellitus: a prospective study. Environ Health Perspect. 2018;126(2):027006. https://doi.org/10.1289/ehp2716.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li X, Huang Y, Xing Y, Hu C, Zhang W, Tang Y, et al. Association of urinary cadmium, circulating fatty acids, and risk of gestational diabetes mellitus: a nested case-control study in China. Environ Int. 2020;137:105527. https://doi.org/10.1016/j.envint.2020.105527.

Article 
PubMed 

Google Scholar
 

Lauwerys R, Buchet JP, Roels H, Hubermont G. Placental transfer of lead, mercury, cadmium, and carbon monoxide in women. I. Comparison of the frequency distributions of the biological indices in maternal and umbilical cord blood. Environ Res. 1978;15(2):278–89. https://doi.org/10.1016/0013-9351(78)90104-4.

Article 
PubMed 

Google Scholar
 

Lee MS, Eum KD, Golam M, Quamruzzaman Q, Kile ML, Mazumdar M, et al. Umbilical cord blood metal mixtures and birth size in Bangladeshi children. Environ Health Perspect. 2021;129(5):57006. https://doi.org/10.1289/ehp7502.

Article 
PubMed 

Google Scholar
 

Takatani T, Eguchi A, Yamamoto M, Sakurai K, Takatani R, Taniguchi Y, et al. Individual and mixed metal maternal blood concentrations in relation to birth size: an analysis of the Japan environment and children’s study (JECS). Environ Int. 2022;165:107318. https://doi.org/10.1016/j.envint.2022.107318.

Article 
PubMed 

Google Scholar
 

Kou X, Millán MP, Canals J, Moreno VR, Renzetti S, Arija V. Effects of prenatal exposure to multiple heavy metals on infant neurodevelopment: a multi-statistical approach. Environ Pollut. 2025;367:125647. https://doi.org/10.1016/j.envpol.2025.125647.

Article 
PubMed 

Google Scholar
 

Lontchi-Yimagou E, Kang S, Goyal A, Zhang K, You JY, Carey M. Insulin-sensitizing effects of vitamin D repletion mediated by adipocyte vitamin D receptor: studies in humans and mice. Mol Metab. 2020;42:101095. https://doi.org/10.1016/j.molmet.2020.101095.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bucurica S, Nancoff AS, Dutu M, Mititelu MR, Gaman LE, Ioniță-Radu F, et al. Exploring the relationship between lipid profile, inflammatory state and 25-OH vitamin D serum levels in hospitalized patients. Biomedicines. 2024;12(8):1686. https://doi.org/10.3390/biomedicines12081686.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hahn J, Cook NR, Alexander EK, Friedman S, Walter J, Bubes V, et al. Vitamin D and marine Omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ. 2022;376:e066452. https://doi.org/10.1136/bmj-2021-066452.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81. https://doi.org/10.1056/NEJMra070553.

Article 
PubMed 

Google Scholar
 

Malabanan A, Veronikis IE, Holick MF. Redefining vitamin D insufficiency. Lancet. 1998;351(9105):805–6. https://doi.org/10.1016/s0140-6736(05)78933-9.

Article 
PubMed 

Google Scholar
 

Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30. https://doi.org/10.1210/jc.2011-0385.

Article 
PubMed 

Google Scholar
 

Smirnova DV, Rehm CD, Fritz RD, Kutepova IS, Soshina MS, Berezhnaya YA. Vitamin D status of the Russian adult population from 2013 to 2018. Sci Rep. 2022;12(1):16604. https://doi.org/10.1038/s41598-022-21221-4.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chan Y, Cai D, Guo R, Zhou X, He G, Li H, et al. Evaluation of the deficiency status of 25-hydroxyvitamin D and associated factors in Southwest China: a hospital-based retrospective cross-sectional analysis of a low-latitude, high-altitude, multiracial region. Nutr Bull. 2023;48(4):535–45. https://doi.org/10.1111/nbu.12645.

Article 
PubMed 

Google Scholar
 

Saraf R, Morton SM, Camargo CA Jr., Grant CC. Global summary of maternal and newborn vitamin D status – a systematic review. Matern Child Nutr. 2016;12(4):647–68. https://doi.org/10.1111/mcn.12210.

Milajerdi A, Abbasi F, Mousavi SM, Esmaillzadeh A. Maternal vitamin D status and risk of gestational diabetes mellitus: a systematic review and meta-analysis of prospective cohort studies. Clin Nutr. 2021;40(5):2576–86. https://doi.org/10.1016/j.clnu.2021.03.037.

Article 
PubMed 

Google Scholar
 

Zhao R, Zhou L, Wang S, Xiong G, Hao L. Association between maternal vitamin D levels and risk of adverse pregnancy outcomes: a systematic review and dose-response meta-analysis. Food Funct. 2022;13(1):14–37. https://doi.org/10.1039/d1fo03033g.

Article 
PubMed 

Google Scholar
 

Yuan Y, Tai W, Xu P, Fu Z, Wang X, Long W, et al. Association of maternal serum 25-hydroxyvitamin D concentrations with risk of preeclampsia: a nested case-control study and meta-analysis. J Matern Fetal Neonatal Med. 2021;34(10):1576–85. https://doi.org/10.1080/14767058.2019.1640675.

Article 
PubMed 

Google Scholar
 

Zhang Y, Jukic AMZ, Song H, Zhang L, Yang F, Wu S, et al. Serum vitamin D concentrations, time to pregnancy, and pregnancy outcomes among preconception couples: a cohort study in Shanghai, China. Nutrients. 2022;14(15):3058. https://doi.org/10.3390/nu14153058.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lima MS, Pereira M, Castro CT, Santos DB. Vitamin D deficiency and anemia in pregnant women: a systematic review and meta-analysis. Nutr Rev. 2022;80(3):428–38. https://doi.org/10.1093/nutrit/nuab114.

Article 
PubMed 

Google Scholar
 

Tahsin T, Khanam R, Chowdhury NH, Hasan A, Hosen MB, Rahman S, et al. Vitamin D deficiency in pregnancy and the risk of preterm birth: a nested case-control study. BMC Pregnancy Childbirth. 2023;23(1):322. https://doi.org/10.1186/s12884-023-05636-z.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chen C, Wang S, Zhang C, Wu X, Zhou L, Zou X, et al. Association between serum vitamin D level during pregnancy and recurrent spontaneous abortion: a systematic review and meta-analysis. Am J Reprod Immunol. 2022;88(3):e13582. https://doi.org/10.1111/aji.13582.

Article 
PubMed 

Google Scholar
 

Chen Y, Zhu B, Wu X, Li S, Tao F. Association between maternal vitamin D deficiency and small for gestational age: evidence from a meta-analysis of prospective cohort studies. BMJ Open. 2017;7(8):e016404. https://doi.org/10.1136/bmjopen-2017-016404.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Harari F, Åkesson A, Casimiro E, Lu Y, Vahter M. Exposure to lithium through drinking water and calcium homeostasis during pregnancy: a longitudinal study. Environ Res. 2016;147:1–7. https://doi.org/10.1016/j.envres.2016.01.031.

Article 
PubMed 

Google Scholar
 

Zhang J, Bai Y, Chen X, Li S, Meng X, Jia A, et al. Association between urinary arsenic species and vitamin D deficiency: a cross-sectional study in Chinese pregnant women. Front Public Health. 2024;12:1371920. https://doi.org/10.3389/fpubh.2024.1371920.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jukic AMZ, Kim SS, Meeker JD, Weiss ST, Cantonwine DE, McElrath TF, et al. A prospective study of maternal 25-hydroxyvitamin D (25OHD) in the first trimester of pregnancy and second trimester heavy metal levels. Environ Res. 2021;199:111351. https://doi.org/10.1016/j.envres.2021.111351.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fisher M, Potter B, Little J, Oulhote Y, Weiler HA, Fraser W, et al. Blood metals and vitamin D status in a pregnancy cohort: a bidirectional biomarker analysis. Environ Res. 2022;211:113034. https://doi.org/10.1016/j.envres.2022.113034.

Article 
PubMed 

Google Scholar
 

Arbuckle TE, Liang CL, Morisset AS, Fisher M, Weiler H, Cirtiu CM, et al. Maternal and fetal exposure to cadmium, lead, manganese and mercury: the MIREC study. Chemosphere. 2016;163:270–82. https://doi.org/10.1016/j.chemosphere.2016.08.023.

Article 
PubMed 

Google Scholar
 

Jukic AMZ, Zuchniak A, Qamar H, Ahmed T, Mahmud AA, Roth DE. Vitamin D treatment during pregnancy and maternal and neonatal cord blood metal concentrations at delivery: results of a randomized controlled trial in Bangladesh. Environ Health Perspect. 2020;128(11):117007. https://doi.org/10.1289/ehp7265.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Brzóska MM, Moniuszko-Jakoniuk J. The influence of calcium content in diet on cumulation and toxicity of cadmium in the organism. Arch Toxicol. 1998;72(2):63–73. https://doi.org/10.1007/s002040050470.

Article 
PubMed 

Google Scholar
 

Li HB, Xue RY, Chen XQ, Lin XY, Shi XX, Du HY, et al. Ca minerals and oral bioavailability of Pb, Cd, and as from indoor dust in mice: mechanisms and health implications. Environ Health Perspect. 2022;130(12):127004. https://doi.org/10.1289/ehp11730.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Khattar V, Wang L, Peng JB. Calcium selective channel TRPV6: structure, function, and implications in health and disease. Gene. 2022;817:146192. https://doi.org/10.1016/j.gene.2022.146192.

Article 
PubMed 
PubMed Central 

Google Scholar
 

van Cromphaut SJ, Dewerchin M, Hoenderop JG, Stockmans I, Van Herck E, Kato S, et al. Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Proc Natl Acad Sci U S A. 2001;98(23):13324–9. https://doi.org/10.1073/pnas.231474698.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bronner F, Buckley M. The molecular nature of 1,25-(OH)2-D3-induced calcium-binding protein biosynthesis in the rat. Adv Exp Med Biol. 1982;151:355–60. https://doi.org/10.1007/978-1-4684-4259-5_41.

Article 
PubMed 

Google Scholar
 

Bronner F, Pansu D, Stein WD. An analysis of intestinal calcium transport across the rat intestine. Am J Physiol. 1986;250(5 Pt 1):G561–9. https://doi.org/10.1152/ajpgi.1986.250.5.G561.

Article 
PubMed 

Google Scholar
 

Kwak HS, Chung HJ, Cho DH. Efficacy of the measurement of 25-hydroxyvitamin D2 and D3 levels by using PerkinElmer liquid chromatography-tandem mass spectrometry vitamin D kit compared with DiaSorin radioimmunoassay kit and Elecsys vitamin D total assay. Ann Lab Med. 2015;35(2):263–5. https://doi.org/10.3343/alm.2015.35.2.263.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Choi G, Buckley JP, Kuiper JR, Keil AP. Log-transformation of independent variables. Must we? Epidemiol. 2022;33(6):843–53. https://doi.org/10.1097/ede.0000000000001534.

Article 

Google Scholar
 

Zhang ZW, Shimbo S, Ochi N, et al. Determination of lead and cadmium in food and blood by inductively coupled plasma mass spectrometry: a comparison with graphite furnace atomic absorption spectrometry. Sci Total Environ. 1997;205(2–3):179–87. https://doi.org/10.1016/s0048-9697(97)00197-6.

Article 
PubMed 

Google Scholar
 

Liu J, Chen K, Tang M, et al. Oxidative stress and inflammation mediate the adverse effects of cadmium exposure on all-cause and cause-specific mortality in patients with diabetes and prediabetes. Cardiovasc Diabetol. 2025;24(1):145. https://doi.org/10.1186/s12933-025-02698-5.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Moshfegh AJ, Rhodes DG, Baer DJ, et al. The US department of agriculture automated multiple-pass method reduces bias in the collection of energy intakes. Am J Clin Nutr. 2008;88(2):324–32. https://doi.org/10.1093/ajcn/88.2.324.

Article 
PubMed 

Google Scholar
 

Montville JB, Ahuja JKC, Martin CL, Heendeniya KY, Omolewa-Tomobi G, Steinfeldt LC. USDA food and nutrient database for dietary studies (FNDDS), 5.0. Procedia Food Sci. 2013;2:99–112. https://doi.org/10.1016/j.profoo.2013.04.016.

Article 

Google Scholar
 

Madeddu R, Solinas G, Forte G, Bocca B, Asara Y, Tolu P, et al. Diet and nutrients are contributing factors that influence blood cadmium levels. Nutr Res. 2011;31(9):691–7. https://doi.org/10.1016/j.nutres.2011.09.003.

Article 
PubMed 

Google Scholar
 

Burgette LF, Reiter JP. Multiple imputation for missing data via sequential regression trees. Am J Epidemiol. 2010;172(9):1070–6. https://doi.org/10.1093/aje/kwq260.

Article 
PubMed 

Google Scholar
 

Perperoglou A, Sauerbrei W, Abrahamowicz M, Schmid M. A review of spline function procedures in R. BMC Med Res Methodol. 2019;19(1):46. https://doi.org/10.1186/s12874-019-0666-3.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Nogawa K, Tsuritani I, Kido T, Honda R, Yamada Y, Ishizaki M. Mechanism for bone disease found in inhabitants environmentally exposed to cadmium: decreased serum 1 alpha, 25-dihydroxyvitamin D level. Int Arch Occup Environ Health. 1987;59(1):21–30. https://doi.org/10.1007/bf00377675.

Article 
PubMed 

Google Scholar
 

Nogawa K, Tsuritani I, Kido T, Honda R, Ishizaki M, Yamada Y. Serum vitamin D metabolites in cadmium-exposed persons with renal damage. Int Arch Occup Environ Health. 1990;62(3):189–93. https://doi.org/10.1007/bf00379430.

Article 
PubMed 

Google Scholar
 

Klaassen CD, Liu J, Choudhuri S. Metallothionein. An intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol. 1999;39:267–94. https://doi.org/10.1146/annurev.pharmtox.39.1.267.

Article 
PubMed 

Google Scholar
 

Liu J, Liu Y, Michalska AE, Choo KH, Klaassen CD. Distribution and retention of cadmium in Metallothionein I and II null mice. Toxicol Appl Pharmacol. 1996;136(2):260–8. https://doi.org/10.1006/taap.1996.0033.

Article 
PubMed 

Google Scholar
 

Karasawa M, Hosoi J, Hashiba H, Nose K, Tohyama C, Abe E, et al. Regulation of metallothionein gene expression by 1 alpha,25-dihydroxyvitamin D3 in cultured cells and in mice. Proc Natl Acad Sci U S A. 1987;84(24):8810–3. https://doi.org/10.1073/pnas.84.24.8810.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Espart A, Artime S, Tort-Nasarre G, Yara-Varón E. Cadmium exposure during pregnancy and lactation: materno-fetal and newborn repercussions of Cd(ii), and Cd-metallothionein complexes. Metallomics. 2018;10(10):1359–67. https://doi.org/10.1039/c8mt00174j.

Article 
PubMed 

Google Scholar
 

Du J, Jiang S, Hu Z, Tang S, Sun Y, He J, et al. Vitamin D receptor activation protects against lipopolysaccharide-induced acute kidney injury through suppression of tubular cell apoptosis. Am J Physiol Ren Physiol. 2019;316(5):F1068–77. https://doi.org/10.1152/ajprenal.00332.2018.

Article 

Google Scholar
 

Dai Q, Zhang H, Tang S, Wu X, Wang J, Yi B, et al. Vitamin D-VDR (vitamin D receptor) alleviates glucose metabolism reprogramming in lipopolysaccharide-induced acute kidney injury. Front Physiol. 2023;14:1083643. https://doi.org/10.3389/fphys.2023.1083643.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Julin B, Vahter M, Amzal B, Wolk A, Berglund M, Åkesson A. Relation between dietary cadmium intake and biomarkers of cadmium exposure in premenopausal women accounting for body iron stores. Environ Health. 2011;10:105. https://doi.org/10.1186/1476-069x-10-105.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Christoffersen J, Christoffersen MR, Larsen R, Rostrup E, Tingsgaard P, Andersen O. Interaction of cadmium ions with calcium hydroxyapatite crystals: a possible mechanism contributing to the pathogenesis of cadmium-induced bone diseases. Calcif Tissue Int. 1988;42(5):331–9. https://doi.org/10.1007/bf02556369.

Article 
PubMed 

Google Scholar
 

Demay MB, Kiernan MS, DeLuca HF, Kronenberg HM. Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A. 1992;89(17):8097–101. https://doi.org/10.1073/pnas.89.17.8097.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Silver J, Russell J, Sherwood LM. Regulation by vitamin D metabolites of messenger ribonucleic acid for preproparathyroid hormone in isolated bovine parathyroid cells. Proc Natl Acad Sci U S A. 1985;82(12):4270–3. https://doi.org/10.1073/pnas.82.12.4270.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Akesson A, Bjellerup P, Lundh T, Lidfeldt J, Nerbrand C, Samsioe G, et al. Cadmium-induced effects on bone in a population-based study of women. Environ Health Perspect. 2006;114(6):830–4. https://doi.org/10.1289/ehp.8763.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Singh P, Rawat A, Alwakeel M, Sharif E, Al Khodor S. The potential role of vitamin D supplementation as a gut microbiota modifier in healthy individuals. Sci Rep. 2020;10(1):21641. https://doi.org/10.1038/s41598-020-77806-4.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Anchidin-Norocel L, Iatcu OC, Lobiuc A, Covasa M. Heavy metal-gut microbiota interactions: probiotics modulation and biosensors detection. Biosensors. 2025;15(3):188. https://doi.org/10.3390/bios15030188.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Djurasevic S, Jama A, Jasnic N, Vujovic P, Jovanovic M, Mitic-Culafic D, et al. The protective effects of probiotic bacteria on cadmium toxicity in rats. J Med Food. 2017;20(2):189–96. https://doi.org/10.1089/jmf.2016.0090.

Article 
PubMed 

Google Scholar
 

N GA, EM MA, Shabanna S, Abd-Elrahman E. Protective efficacy of Streptococcus thermophilus against acute cadmium toxicity in mice. Iran J Pharm Res. 2018;17(2):695–707.


Google Scholar
 

Al-Enazi AMM, Virk P, Hindi A, Awad MA, Elobeid M, Qindeel R. Protective effect of probiotic bacteria and its nanoformulation against cadmium-induced oxidative stress in male Wistar rat. J King Saud Univ Sci. 2020;32(7):3045–51. https://doi.org/10.1016/j.jksus.2020.08.011.

Article 

Google Scholar
 

Zhai Q, Tian F, Zhao J, Zhang H, Narbad A, Chen W. Oral administration of probiotics inhibits absorption of the heavy metal cadmium by protecting the intestinal barrier. Appl Environ Microbiol. 2016;82(14):4429–40. https://doi.org/10.1128/aem.00695-16.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Moon J. The role of vitamin D in toxic metal absorption: a review. J Am Coll Nutr. 1994;13(6):559–64. https://doi.org/10.1080/07315724.1994.10718447.

Article 
PubMed 

Google Scholar
 

Park JD, Cherrington NJ, Klaassen CD. Intestinal absorption of cadmium is associated with divalent metal transporter 1 in rats. Toxicol Sci. 2002;68(2):288–94. https://doi.org/10.1093/toxsci/68.2.288.

Article 
PubMed 

Google Scholar
 

Kovacs G, Danko T, Bergeron MJ, Balazs B, Suzuki Y, Zsembery A, et al. Heavy metal cations permeate the TRPV6 epithelial cation channel. Cell Calcium. 2011;49(1):43–55. https://doi.org/10.1016/j.ceca.2010.11.007.

Article 
PubMed 

Google Scholar
 

Kovacs G, Montalbetti N, Franz MC, Graeter S, Simonin A, Hediger MA. Human TRPV5 and TRPV6: key players in cadmium and zinc toxicity. Cell Calcium. 2013;54(4):276–86. https://doi.org/10.1016/j.ceca.2013.07.003.

Article 
PubMed 

Google Scholar
 

Richardt G, Federolf G, Habermann E. Affinity of heavy metal ions to intracellular Ca2+-binding proteins. Biochem Pharmacol. 1986;35(8):1331–5. https://doi.org/10.1016/0006-2952(86)90278-9.

Article 
PubMed 

Google Scholar
 

Verbost PM, Flik G, Pang PK, Lock RA, Wendelaar Bonga SE. Cadmium inhibition of the erythrocyte Ca2+ pump. A molecular interpretation. J Biol Chem. 1989;264(10):5613–5.

Article 
PubMed 

Google Scholar
 

Klinck JS, Wood CM. In vitro characterization of cadmium transport along the gastro-intestinal tract of freshwater rainbow trout (Oncorhynchus mykiss). Aquat Toxicol. 2011;102(1–2):58–72. https://doi.org/10.1016/j.aquatox.2010.12.009.

Article 
PubMed 

Google Scholar
 

Martinez-Finley E, Chakraborty S, Fretham S, Aschner M. Admit one: how essential and nonessential metals gain entrance into the cell. Metallomics. 2012;4(7):593–605. https://doi.org/10.1039/c2mt00185c.

Article 
PubMed 

Google Scholar
 

Durand D, Braithwaite GD, Barlet JP. The effect of 1 alpha-hydroxycholecalciferol on the placental transfer of calcium and phosphate in sheep. Br J Nutr. 1983;49(3):475–80. https://doi.org/10.1079/bjn19830056.

Article 
PubMed 

Google Scholar
 

Elmorsy EM, Al-Ghafari AB, Al Doghaither HA, Alrowaili MG, Khired ZA, Toraih EA, et al. Vitamin D alleviates heavy metal-induced cytotoxic effects on human bone osteoblasts via the induction of bioenergetic disruption, oxidative stress, and apoptosis. Biol Trace Elem Res. 2025;203(4):2420–34. https://doi.org/10.1007/s12011-024-04337-8.

Article 
PubMed 

Google Scholar
 

Institute of Medicine Committee to Review Dietary Reference Intakes for Vitamin D, Calcium. The National Academies Collection: Reports funded by National Institutes of Health. In: Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium, Dietary Reference Intakes for Calcium and Vitamin D, Ross AC, Taylor CL, Yaktine AL. Del Valle HB, editors. Dietary reference intakes for calcium and vitamin D. Washington (DC): National Academies Press (US); 2011.

Gulson B, Mizon K, Korsch M, Taylor A. Revisiting mobilisation of skeletal lead during pregnancy based on monthly sampling and cord/maternal blood lead relationships confirm placental transfer of lead. Arch Toxicol. 2016;90(4):805–16. https://doi.org/10.1007/s00204-015-1515-8.

Article 
PubMed 

Google Scholar
 

Gulson BL, Jameson CW, Mahaffey KR, Mizon KJ, Korsch MJ, Vimpani G. Pregnancy increases mobilization of lead from maternal skeleton. J Lab Clin Med. 1997;130(1):51–62. https://doi.org/10.1016/s0022-2143(97)90058-5.

Article 
PubMed 

Google Scholar
 

Kovacs CS. Maternal mineral and bone metabolism during pregnancy, lactation, and post-weaning recovery. Physiol Rev. 2016;96(2):449–547. https://doi.org/10.1152/physrev.00027.2015.

Article 
PubMed 

Google Scholar
 

Hinkle PM, Kinsella PA, Osterhoudt KC. Cadmium uptake and toxicity via voltage-sensitive calcium channels. J Biol Chem. 1987;262(34):16333–7.

Article 
PubMed 

Google Scholar
 

Friedman PA, Gesek FA. Cadmium uptake by kidney distal convoluted tubule cells. Toxicol Appl Pharmacol. 1994;128(2):257–63. https://doi.org/10.1006/taap.1994.1205.

Article 
PubMed 

Google Scholar