Goldstein, G. et al. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc. Natl Acad. Sci. USA 72, 11–15 (1975).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dikic, I. & Schulman, B. A. An expanded lexicon for the ubiquitin code. Nat. Rev. Mol. Cell Biol. 24, 273–287 (2023).

Article 
PubMed 

Google Scholar
 

Otten, E. G. et al. Ubiquitylation of lipopolysaccharide by RNF213 during bacterial infection. Nature 594, 111–116 (2021). This study shows for the first time that a lipid molecule can be ubiquitinated and it identifies the E3 ligases that links detection of Gram-negative bacteria with its autophagic clearance.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kelsall, I. R. et al. HOIL-1 ubiquitin ligase activity targets unbranched glucosaccharides and is required to prevent polyglucosan accumulation. EMBO J. 41, e109700 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yang, C.-S. et al. Ubiquitin modification by the E3 ligase/ADP-ribosyltransferase Dtx3L/Parp9. Mol. Cell 66, 503–516.e5 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tracz, M. & Bialek, W. Beyond K48 and K63: non-canonical protein ubiquitination. Cell. Mol. Biol. Lett. 26, 1 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Clague, M. J., Urbé, S. & Komander, D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat. Rev. Mol. Cell Biol. 20, 338–352 (2019).

Article 
PubMed 

Google Scholar
 

Ciechanover, A., Finley, D. & Varshavsky, A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37, 57–66 (1984).

Article 
PubMed 

Google Scholar
 

Bjørkøy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614 (2005).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lamark, T. & Johansen, T. Mechanisms of selective autophagy. Annu. Rev. Cell Dev. Biol. 37, 143–169 (2021).

Article 
PubMed 

Google Scholar
 

Madiraju, C., Novack, J. P., Reed, J. C. & Matsuzawa, S. K63 ubiquitination in immune signaling. Trends Immunol. 43, 148–162 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gao, L. et al. The mechanism of linear ubiquitination in regulating cell death and correlative diseases. Cell Death Dis. 14, 1–13 (2023).

Article 

Google Scholar
 

Komander, D. et al. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep. 10, 466–473 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M. & Ashwell, J. D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877 (2000).

Article 
PubMed 

Google Scholar
 

Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

Article 
PubMed 

Google Scholar
 

Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136, 1098–1109 (2009).

Article 
PubMed 

Google Scholar
 

Oeckinghaus, A. et al. Malt1 ubiquitination triggers NF-κB signaling upon T-cell activation. EMBO J. 26, 4634–4645 (2007).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ni, X. et al. TRAF6 directs FOXP3 localization and facilitates regulatory T-cell function through K63-linked ubiquitination. EMBO J. 38, e99766 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Habelhah, H. et al. Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-κB. EMBO J. 23, 322–332 (2004).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, X. et al. TRAF5-mediated Lys-63-linked polyubiquitination plays an essential role in positive regulation of RORγt in promoting IL-17A expression. J. Biol. Chem. 290, 29086–29094 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hatakeyama, S. TRIM family proteins: roles in autophagy, immunity, and carcinogenesis. Trends Biochem. Sci. 42, 297–311 (2017).

Article 
PubMed 

Google Scholar
 

Versteeg, G. A. et al. The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors. Immunity 38, 384–398 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gack, M. U. et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920 (2007).

Article 
PubMed 

Google Scholar
 

Sanchez, J. G. et al. TRIM25 binds RNA to modulate cellular anti-viral defense. J. Mol. Biol. 430, 5280–5293 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tsuchida, T. et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 33, 765–776 (2010).

Article 
PubMed 

Google Scholar
 

Liu, S. et al. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. eLife 2, e00785 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ni, G., Konno, H. & Barber, G. N. Ubiquitination of STING at lysine 224 controls IRF3 activation. Sci. Immunol. 2, eaah7119 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fukushima, T. et al. Ubiquitin-conjugating enzyme Ubc13 is a critical component of TNF receptor-associated factor (TRAF)-mediated inflammatory responses. Proc. Natl Acad. Sci. USA 104, 6371–6376 (2007).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jahan, A. S., Elbæk, C. R. & Damgaard, R. B. Met1-linked ubiquitin signalling in health and disease: inflammation, immunity, cancer, and beyond. Cell Death Differ. 28, 473–492 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fiil, B. K. & Gyrd-Hansen, M. The Met1-linked ubiquitin machinery in inflammation and infection. Cell Death Differ. 28, 557–569 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kirisako, T. et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25, 4877–4887 (2006). This study identifies the LUBAC subunits HOIL1 and HOIP and the is the first study to describe M1-linked ubiquitination.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Keusekotten, K. et al. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153, 1312–1326 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rivkin, E. et al. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 498, 318–324 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

Article 
PubMed 

Google Scholar
 

Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 (2011). 

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tokunaga, F. et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011). Together with Gerlach et al. (2011) and Ikeda et al. (2011), this study identifes the final subunit of the LUBAC complex, SHARPIN, and the connection between M1-linked ubiquitination and NF-κB signalling.

Article 
PubMed 

Google Scholar
 

Emmerich, C. H. et al. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc. Natl Acad. Sci. USA 110, 15247–15252 (2013). This study shows that LUBAC produces M1-linked ubiquitin chains in response to K63-linked ubiquitin chains, both of which activate NF-κB signalling.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gyrd-Hansen, M. et al. IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-κB as well as cell survival and oncogenesis. Nat. Cell Biol. 10, 1309–1317 (2008).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Boisson, B. et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat. Immunol. 13, 1178–1186 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Heger, K. et al. OTULIN limits cell death and inflammation by deubiquitinating LUBAC. Nature 559, 120–124 (2018).

Article 
PubMed 

Google Scholar
 

Haas, T. L. et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell 36, 831–844 (2009).

Article 
PubMed 

Google Scholar
 

Peltzer, N. et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature 557, 112–117 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xia, Z.-P. et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461, 114–119 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zeng, W. et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315–330 (2010). Together with Xia et al. (2009), this study detects unanchored polyubiquitin chains synthesized by following IL-1β stimulation or infection and their role in immune activation.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Catici, D. A. M., Horne, J. E., Cooper, G. E. & Pudney, C. R. Polyubiquitin drives the molecular interactions of the NF-κB essential modulator (NEMO) by allosteric regulation. J. Biol. Chem. 290, 14130–14139 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Skaug, B. et al. Direct, noncatalytic mechanism of IKK inhibition by A20. Mol. Cell 44, 559–571 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rehwinkel, J. & Gack, M. U. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat. Rev. Immunol. 20, 537–551 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Song, B. et al. Ordered assembly of the cytosolic RNA-sensing MDA5-MAVS signaling complex via binding to unanchored K63-linked poly-ubiquitin chains. Immunity 54, 2218–2230.e5 (2021).

Article 
PubMed 

Google Scholar
 

Liu, F. et al. MAVS-loaded unanchored Lys63-linked polyubiquitin chains activate the RIG-I-MAVS signaling cascade. Cell Mol. Immunol. 20, 1186–1202 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jiang, X. et al. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 36, 959–973 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rajsbaum, R. et al. Unanchored K48-linked polyubiquitin synthesized by the E3-ubiquitin ligase TRIM6 stimulates the interferon-IKKε kinase-mediated antiviral response. Immunity 40, 880–895 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Luo, H. Interplay between the virus and the ubiquitin–proteasome system: molecular mechanism of viral pathogenesis. Curr. Opin. Virol. 17, 1–10 (2016).

Article 
PubMed 

Google Scholar
 

Ko, A. et al. MKRN1 induces degradation of west nile virus capsid protein by functioning as an E3 ligase. J. Virol. 84, 426–436 (2010).

Article 
PubMed 

Google Scholar
 

Shirakura, M. et al. E6AP ubiquitin ligase mediates ubiquitylation and degradation of hepatitis C virus core protein. J. Virol. 81, 1174–1185 (2007).

Article 
PubMed 

Google Scholar
 

Apte, S. et al. An innate pathogen sensing strategy involving ubiquitination of bacterial surface proteins. Sci. Adv. 9, eade1851 (2023). This study identifies a bacterial degron, which is used by the human E3 ligase to recognize foreign protein.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mallery, D. L. et al. Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proc. Natl Acad. Sci. USA 107, 19985–19990 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

McEwan, W. A. et al. Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat. Immunol. 14, 327–336 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rikihisa, Y. Glycogen autophagosomes in polymorphonuclear leukocytes induced by rickettsiae. Anat. Rec. 208, 319–327 (1984).

Article 
PubMed 

Google Scholar
 

Mukherjee, R. & Dikic, I. Regulation of host–pathogen interactions via the ubiquitin system. Annu. Rev. Microbiol. 76, 211–233 (2022).

Article 
PubMed 

Google Scholar
 

Noad, J. et al. LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-κB. Nat. Microbiol. 2, 1–10 (2017).

Article 

Google Scholar
 

van Wijk, S. J. L. et al. Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation. Nat. Microbiol. 2, 1–10 (2017).


Google Scholar
 

Huett, A. et al. The LRR and RING domain protein LRSAM1 Is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium. Cell Host Microbe 12, 778–790 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Manzanillo, P. S. et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501, 512–516 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zheng, Y. T. et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway1. J. Immunol. 183, 5909–5916 (2009).

Article 
PubMed 

Google Scholar
 

Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts salmonella growth. Science 333, 228–233 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Thurston, T. L. M., Ryzhakov, G., Bloor, S., von Muhlinen, N. & Randow, F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10, 1215–1221 (2009).

Article 
PubMed 

Google Scholar
 

Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19, 349–364 (2018).

Article 
PubMed 

Google Scholar
 

Scheidel, J., Amstein, L., Ackermann, J., Dikic, I. & Koch, I. In silico knockout studies of xenophagic capturing of salmonella. PLoS Comput. Biol. 12, e1005200 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mostowy, S. et al. p62 and NDP52 proteins target intracytosolic shigella and listeria to different autophagy pathways. J. Biol. Chem. 286, 26987–26995 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Py, B. F., Lipinski, M. M. & Yuan, J. Autophagy limits listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy 3, 117–125 (2007).

Article 
PubMed 

Google Scholar
 

Birmingham, C. L. et al. Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy 3, 442–451 (2007).

Article 
PubMed 

Google Scholar
 

Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

Article 
PubMed 

Google Scholar
 

Watson, R. O., Manzanillo, P. S. & Cox, J. S. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803–815 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pilli, M. et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37, 223–234 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Casassa, A. F., Vanrell, M. C., Colombo, M. I., Gottlieb, R. A. & Romano, P. S. Autophagy plays a protective role against Trypanosoma cruzi infection in mice. Virulence 10, 151–165 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ling, Y. M. et al. Vacuolar and plasma membrane stripping and autophagic elimination of toxoplasma gondii in primed effector macrophages. J. Exp. Med. 203, 2063–2071 (2006).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Paludan, C. et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307, 593–596 (2005).

Article 
PubMed 

Google Scholar
 

Kim, N. et al. Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A. Nat. Commun. 7, 10631 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sagnier, S. et al. Autophagy restricts HIV-1 infection by selectively degrading tat in CD4+ T lymphocytes. J. Virol. 89, 615–625 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Valera, M.-S. et al. The HDAC6/APOBEC3G complex regulates HIV-1 infectiveness by inducing Vif autophagic degradation. Retrovirology 12, 53 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Choi, Y., Bowman, J. W. & Jung, J. U. Autophagy during viral infection — a double-edged sword. Nat. Rev. Microbiol. 16, 341–354 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, Y. et al. Control of infection by LC3-associated phagocytosis, CASM, and detection of raised vacuolar pH by the V-ATPase-ATG16L1 axis. Sci. Adv. 8, eabn3298 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sanjuan, M. A. et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253–1257 (2007).

Article 
PubMed 

Google Scholar
 

Prado, M. et al. Long-term live imaging reveals cytosolic immune responses of host hepatocytes against plasmodium infection and parasite escape mechanisms. Autophagy 11, 1561–1579 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Murata, S., Takahama, Y., Kasahara, M. & Tanaka, K. The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat. Immunol. 19, 923–931 (2018).

Article 
PubMed 

Google Scholar
 

Kroemer, G., Galassi, C., Zitvogel, L. & Galluzzi, L. Immunogenic cell stress and death. Nat. Immunol. 23, 487–500 (2022).

Article 
PubMed 

Google Scholar
 

Lopez-Castejon, G. Control of the inflammasome by the ubiquitin system. FEBS J. 287, 11–26 (2020).

Article 
PubMed 

Google Scholar
 

Wang, L. et al. USP18 antagonizes pyroptosis by facilitating selective autophagic degradation of gasdermin D. Research 7, 0380 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Humphries, F. et al. The E3 ubiquitin ligase pellino2 mediates priming of the NLRP3 inflammasome. Nat. Commun. 9, 1560 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Guan, K. et al. MAVS promotes inflammasome activation by targeting ASC for K63-linked ubiquitination via the E3 ligase TRAF3. J. Immunol. 194, 4880–4890 (2015).

Article 
PubMed 

Google Scholar
 

Duong, B. H. et al. A20 restricts ubiquitination of pro-interleukin-1β protein complexes and suppresses NLRP3 inflammasome activity. Immunity 42, 55–67 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Shi, Y. et al. E3 ubiquitin ligase SYVN1 is a key positive regulator for GSDMD-mediated pyroptosis. Cell Death Dis. 13, 1–14 (2022).

Article 

Google Scholar
 

Roberts, J. Z., Crawford, N. & Longley, D. B. The role of ubiquitination in apoptosis and necroptosis. Cell Death Differ. 29, 272–284 (2022).

Article 
PubMed 

Google Scholar
 

de Almagro, M. C. et al. Coordinated ubiquitination and phosphorylation of RIP1 regulates necroptotic cell death. Cell Death Differ. 24, 26–37 (2017).

Article 
PubMed 

Google Scholar
 

Onizawa, M. et al. The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis. Nat. Immunol. 16, 618–627 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Douglas, T. & Saleh, M. Post-translational modification of OTULIN regulates ubiquitin dynamics and cell death. Cell Rep. 29, 3652–3663.e5 (2019).

Article 
PubMed 

Google Scholar
 

Tang, Y. et al. K63-linked ubiquitination regulates RIPK1 kinase activity to prevent cell death during embryogenesis and inflammation. Nat. Commun. 10, 4157 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li, H., Kobayashi, M., Blonska, M., You, Y. & Lin, X. Ubiquitination of RIP is required for tumor necrosis factor α-induced NF-κB activation. J. Biol. Chem. 281, 13636–13643 (2006).

Article 
PubMed 

Google Scholar
 

Liccardi, G. & Annibaldi, A. MLKL post-translational modifications: road signs to infection, inflammation and unknown destinations. Cell Death Differ. 30, 269–278 (2023).

Article 
PubMed 

Google Scholar
 

Garcia, L. R. et al. Ubiquitylation of MLKL at lysine 219 positively regulates necroptosis-induced tissue injury and pathogen clearance. Nat. Commun. 12, 3364 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Liu, Z. et al. Oligomerization-driven MLKL ubiquitylation antagonizes necroptosis. EMBO J. 40, e103718 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yoon, S., Bogdanov, K. & Wallach, D. Site-specific ubiquitination of MLKL targets it to endosomes and targets listeria and yersinia to the lysosomes. Cell Death Differ. 29, 306–322 (2022). Together with Garcia et al. (2021) and Liu et al. (2021), this study describes the complex regulation of MLKL by ubiquitination, suggesting several checkpoints before necroptotic cell death.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dupont, N. et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J. 30, 4701–4711 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

Article 
PubMed 

Google Scholar
 

Harris, J. et al. Autophagy controls IL-1β secretion by targeting pro-IL-1β for degradation. J. Biol. Chem. 286, 9587–9597 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Piletic, K., Alsaleh, G. & Simon, A. K. Autophagy orchestrates the crosstalk between cells and organs. EMBO Rep. 24, e57289 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, L.-J. et al. The microtubule-associated protein EB1 links AIM2 inflammasomes with autophagy-dependent secretion. J. Biol. Chem. 289, 29322–29333 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, M., Kenny, S. J., Ge, L., Xu, K. & Schekman, R. Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion. eLife 4, e11205 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, M. et al. A translocation pathway for vesicle-mediated unconventional protein secretion. Cell 181, 637–652.e15 (2020).

Article 
PubMed 

Google Scholar
 

Kimura, T. et al. Dedicated SNAREs and specialized TRIM cargo receptors mediate secretory autophagy. EMBO J. 36, 42–60 (2017).

Article 
PubMed 

Google Scholar
 

Roberts, C. G., Franklin, T. G. & Pruneda, J. N. Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system. EMBO J. 42, e114318 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cui, J. et al. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science 329, 1215–1218 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jubelin, G. et al. Pathogenic bacteria target NEDD8-conjugated Cullins to hijack host–cell signaling pathways. PLoS Pathog. 6, e1001128 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Morikawa, H. et al. The bacterial effector Cif interferes with SCF ubiquitin ligase function by inhibiting deneddylation of Cullin1. Biochem. Biophys. Res. Commun. 401, 268–274 (2010).

Article 
PubMed 

Google Scholar
 

Gan, N., Nakayasu, E. S., Hollenbeck, P. J. & Luo, Z.-Q. Legionella pneumophila inhibits immune signalling via MavC-mediated transglutaminase-induced ubiquitination of UBE2N. Nat. Microbiol. 4, 134–143 (2019).

Article 
PubMed 

Google Scholar
 

Valleau, D. et al. Discovery of ubiquitin deamidases in the pathogenic arsenal of Legionella pneumophila. Cell Rep. 23, 568–583 (2018).

Article 
PubMed 

Google Scholar
 

Sanada, T. et al. The shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response. Nature 483, 623–626 (2012).

Article 
PubMed 

Google Scholar
 

Toro, T. B., Toth, J. I. & Petroski, M. D. The cyclomodulin cycle inhibiting factor (CIF) alters Cullin neddylation dynamics. J. Biol. Chem. 288, 14716–14726 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ashida, H., Kim, M. & Sasakawa, C. Exploitation of the host ubiquitin system by human bacterial pathogens. Nat. Rev. Microbiol. 12, 399–413 (2014).

Article 
PubMed 

Google Scholar
 

Bailey-Elkin, B. A., Knaap, R. C. M., Kikkert, M. & Mark, B. L. Structure and function of viral deubiquitinating enzymes. J. Mol. Biol. 429, 3441–3470 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sánchez-Alba, L., Borràs-Gas, H., Huang, G., Varejão, N. & Reverter, D. Structural diversity of the CE-clan proteases in bacteria to disarm host ubiquitin defenses. Trends Biochem. Sci. 49, 1111–1123 (2024).

Article 
PubMed 

Google Scholar
 

Balakirev, M. Y., Jaquinod, M., Haas, A. L. & Chroboczek, J. Deubiquitinating function of adenovirus proteinase. J. Virol. 76, 6323–6331 (2002).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Inn, K.-S. et al. Inhibition of RIG-I-mediated signaling by kaposi’s sarcoma-associated herpesvirus-encoded deubiquitinase ORF64. J. Virol. 85, 10899–10904 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sun, L. et al. Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS ONE 7, e30802 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xing, Y. et al. The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase. J. Gen. Virol. 94, 1554–1567 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chen, X. et al. SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING–TRAF3–TBK1 complex. Protein Cell 5, 369–381 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, D. et al. The leader proteinase of foot-and-mouth disease virus negatively regulates the type I interferon pathway by acting as a viral deubiquitinase. J. Virol. 85, 3758–3766 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

van Kasteren, P. B. et al. Arterivirus and nairovirus ovarian tumor domain-containing deubiquitinases target activated RIG-I to control innate immune signaling. J. Virol. 86, 773–785 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gastaldello, S. et al. A deneddylase encoded by epstein–barr virus promotes viral DNA replication by regulating the activity of Cullin-RING ligases. Nat. Cell Biol. 12, 351–361 (2010).

Article 
PubMed 

Google Scholar
 

Békés, M. et al. SARS hCoV papain-like protease is a unique Lys48 linkage-specific di-distributive deubiquitinating enzyme. Biochem. J. 468, 215–226 (2015).

Article 
PubMed 

Google Scholar
 

Misaghi, S. et al. Chlamydia trachomatis-derived deubiquitinating enzymes in mammalian cells during infection. Mol. Microbiol. 61, 142–150 (2006).

Article 
PubMed 

Google Scholar
 

Pruneda, J. N. et al. The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases. Mol. Cell 63, 261–276 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hermanns, T. & Hofmann, K. Bacterial DUBs: deubiquitination beyond the seven classes. Biochem. Soc. Trans. 47, 1857–1866 (2019).

Article 
PubMed 

Google Scholar
 

Tan, K. S. et al. Suppression of host innate immune response by burkholderia pseudomallei through the virulence factor TssM. J. Immunol. 184, 5160–5171 (2010).

Article 
PubMed 

Google Scholar
 

Le Negrate, G. et al. Salmonella secreted factor L deubiquitinase of Salmonella typhimurium inhibits NF-κB, suppresses IκBα ubiquitination and modulates innate immune responses. J. Immunol. 180, 5045–5056 (2008).

Article 
PubMed 

Google Scholar
 

Huang, J. & Brumell, J. H. Bacteria–autophagy interplay: a battle for survival. Nat. Rev. Microbiol. 12, 101–114 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Aguilera, M. O., Delgui, L. R., Reggiori, F., Romano, P. S. & Colombo, M. I. Autophagy as an innate immunity response against pathogens: a Tango dance. FEBS Lett. 598, 140–166 (2024).

Article 
PubMed 

Google Scholar
 

Tattoli, I. et al. Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 11, 563–575 (2012). This study describes the complex interplay between metabolism, autophagy and cell-autonomous immune response to different intracellular bacteria.

Article 
PubMed 

Google Scholar
 

Ganesan, R. et al. Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoS Pathog. 13, e1006227 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Orvedahl, A. et al. HSV-1 ICP34.5 confers neurovirulence by targeting the beclin 1 autophagy protein. Cell Host Microbe 1, 23–35 (2007).

Article 
PubMed 

Google Scholar
 

Chaumorcel, M. et al. The human cytomegalovirus protein TRS1 inhibits autophagy via its interaction with beclin 1. J. Virol. 86, 2571–2584 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mouna, L. et al. Analysis of the role of autophagy inhibition by two complementary human cytomegalovirus BECN1/Beclin 1-binding proteins. Autophagy 12, 327–342 (2016).

Article 
PubMed 

Google Scholar
 

Dong, N. et al. Structurally distinct bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses. Cell 150, 1029–1041 (2012).

Article 
PubMed 

Google Scholar
 

Feng, Z.-Z. et al. The Salmonella effectors SseF and SseG inhibit Rab1A-mediated autophagy to facilitate intracellular bacterial survival and replication. J. Biol. Chem. 293, 9662–9673 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Barnett, T. C. et al. The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication. Cell Host Microbe 14, 675–682 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Choy, A. et al. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338, 1072–1076 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Real, E. et al. Plasmodium UIS3 sequesters host LC3 to avoid elimination by autophagy in hepatocytes. Nat. Microbiol. 3, 17–25 (2018).

Article 
PubMed 

Google Scholar
 

Lennemann, N. J. & Coyne, C. B. Dengue and Zika viruses subvert reticulophagy by NS2B3-mediated cleavage of FAM134B. Autophagy 13, 322–332 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yoshikawa, Y. et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat. Cell Biol. 11, 1233–1240 (2009).

Article 
PubMed 

Google Scholar
 

Niklaus, L. et al. Deciphering host lysosome-mediated elimination of plasmodium berghei liver stage parasites. Sci. Rep. 9, 7967 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Agop-Nersesian, C. et al. Shedding of host autophagic proteins from the parasitophorous vacuolar membrane of plasmodium berghei. Sci. Rep. 7, 2191 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Abramovitch, R. B., Janjusevic, R., Stebbins, C. E. & Martin, G. B. Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity. Proc. Natl Acad. Sci. USA 103, 2851–2856 (2006).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Janjusevic, R., Abramovitch, R. B., Martin, G. B. & Stebbins, C. E. A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 311, 222–226 (2006). This study is the first E3 ligase of bacterial origin to be described.

Article 
PubMed 

Google Scholar
 

Rosebrock, T. R. et al. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 448, 370–374 (2007).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gimenez-Ibanez, S. et al. AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr. Biol. 19, 423–429 (2009).

Article 
PubMed 

Google Scholar
 

Abramovitch, R. B., Kim, Y., Chen, S., Dickman, M. B. & Martin, G. B. Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO J. 22, 60–69 (2003).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wu, B. et al. NleG type 3 effectors from enterohaemorrhagic Escherichia coli are U-box E3 ubiquitin ligases. PLoS Pathog. 6, e1000960 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kubori, T., Hyakutake, A. & Nagai, H. Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol. Microbiol. 67, 1307–1319 (2008).

Article 
PubMed 

Google Scholar
 

Lin, Y.-H. et al. Host Cell-catalyzed S-palmitoylation mediates golgi targeting of the Legionella ubiquitin ligase GobX. J. Biol. Chem. 290, 25766–25781 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lin, Y.-H. et al. RavN is a member of a previously unrecognized group of Legionella pneumophila E3 ubiquitin ligases. PLoS Pathog. 14, e1006897 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Y., Higashide, W. M., McCormick, B. A., Chen, J. & Zhou, D. The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase. Mol. Microbiol. 62, 786–793 (2006).

Article 
PubMed 

Google Scholar
 

Lin, D. Y., Diao, J., Zhou, D. & Chen, J. Biochemical and structural studies of a HECT-like ubiquitin ligase from Escherichia coli O157:H7. J. Biol. Chem. 286, 441–449 (2011).

Article 
PubMed 

Google Scholar
 

Singer, A. U. et al. A pathogen type III effector with a novel E3 ubiquitin ligase architecture. PLoS Pathog. 9, e1003121 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rohde, J. R., Breitkreutz, A., Chenal, A., Sansonetti, P. J. & Parsot, C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1, 77–83 (2007).

Article 
PubMed 

Google Scholar
 

Singer, A. U. et al. Structure of the shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nat. Struct. Mol. Biol. 15, 1293–1301 (2008).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhu, Y. et al. Structure of a shigella effector reveals a new class of ubiquitin ligases. Nat. Struct. Mol. Biol. 15, 1302–1308 (2008). This study, together with Rohde et al. (2007) and Singer et al. (2008), describes the identification and structural characterization of new bacterial E3 ligases.

Article 
PubMed 

Google Scholar
 

Sandstrom, A. et al. Functional degradation: a mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes. Science 364, eaau1330 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ashida, H. et al. A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKγ to dampen the host NF-κB-mediated inflammatory response. Nat. Cell Biol. 12, 66–73 (2010).

Article 
PubMed 

Google Scholar
 

de Jong, M. F., Liu, Z., Chen, D. & Alto, N. M. Shigella flexneri suppresses NF-κB activation by inhibiting linear ubiquitin chain ligation. Nat. Microbiol. 1, 1–11 (2016).


Google Scholar
 

Suzuki, S. et al. Shigella IpaH7.8 E3 ubiquitin ligase targets glomulin and activates inflammasomes to demolish macrophages. Proc. Natl Acad. Sci. USA 111, E4254–E4263 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hansen, J. M. et al. Pathogenic ubiquitination of GSDMB inhibits NK cell bactericidal functions. Cell 184, 3178–3191.e18 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Luchetti, G. et al. Shigella ubiquitin ligase IpaH7.8 targets gasdermin D for degradation to prevent pyroptosis and enable infection. Cell Host Microbe 29, 1521–1530.e10 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Haraga, A. & Miller, S. I. A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1. Cell. Microbiol. 8, 837–846 (2006).

Article 
PubMed 

Google Scholar
 

Bernal-Bayard, J. & Ramos-Morales, F. Salmonella type III secretion effector SlrP is an E3 ubiquitin ligase for mammalian thioredoxin. J. Biol. Chem. 284, 27587–27595 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Quezada, C. M., Hicks, S. W., Galán, J. E. & Stebbins, C. E. A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. Proc. Natl Acad. Sci. USA 106, 4864–4869 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Herod, A. et al. Genomic and phenotypic analysis of SspH1 identifies a new Salmonella effector, SspH3. Mol. Microbiol. 117, 770–789 (2022).

Article 
PubMed 

Google Scholar
 

Chou, Y.-C., Keszei, A. F. A., Rohde, J. R., Tyers, M. & Sicheri, F. Conserved structural mechanisms for autoinhibition in IpaH ubiquitin ligases. J. Biol. Chem. 287, 268–275 (2012).

Article 
PubMed 

Google Scholar
 

Keszei, A. F. A. et al. Structure of an SspH1–PKN1 complex reveals the basis for host substrate recognition and mechanism of activation for a bacterial E3 ubiquitin ligase. Mol. Cell. Biol. 34, 362–373 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xu, C.-C., Zhang, D., Hann, D. R., Xie, Z.-P. & Staehelin, C. Biochemical properties and in planta effects of NopM, a rhizobial E3 ubiquitin ligase. J. Biol. Chem. 293, 15304–15315 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Nakano, M., Oda, K. & Mukaihara, T. Ralstonia solanacearum novel E3 ubiquitin ligase (NEL) effectors RipAW and RipAR suppress pattern-triggered immunity in plants. Microbiology 163, 992–1002 (2017).

Article 
PubMed 

Google Scholar
 

Cheng, D. et al. Ralstonia solanacearum type III effector RipV2 encoding a novel E3 ubiquitin ligase (NEL) is required for full virulence by suppressing plant PAMP-triggered immunity. Biochem. Biophys. Res. Commun. 550, 120–126 (2021).

Article 
PubMed 

Google Scholar
 

Hsu, F. et al. The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling. Proc. Natl Acad. Sci. USA 111, 10538–10543 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Horenkamp, F. A. et al. Legionella pneumophila subversion of host vesicular transport by SidC effector proteins. Traffic 15, 488–499 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kubori, T., Arasaki, K., Kitao, T. & Nagai, H. Multi-tiered actions of Legionella effectors to modulate host Rab10 dynamics. eLife 12, RP89002 (2023).

Article 

Google Scholar
 

Boname, J. M. & Stevenson, P. G. MHC class I ubiquitination by a Viral PHD/LAP finger protein. Immunity 15, 627–636 (2001).

Article 
PubMed 

Google Scholar
 

Cadwell, K. & Coscoy, L. Ubiquitination on nonlysine residues by a Viral E3 ubiquitin ligase. Science 309, 127–130 (2005).

Article 
PubMed 

Google Scholar
 

Hagglund, R., Van Sant, C., Lopez, P. & Roizman, B. Herpes simplex virus 1-infected cell protein 0 contains two E3 ubiquitin ligase sites specific for different E2 ubiquitin-conjugating enzymes. Proc. Natl Acad. Sci. USA 99, 631–636 (2002).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lilley, C. E. et al. A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO J. 29, 943–955 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Shahnazaryan, D. et al. Herpes simplex virus 1 targets IRF7 via ICP0 to limit type I IFN induction. Sci. Rep. 10, 22216 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Parameswaran, P., Payne, L., Powers, J., Rashighi, M. & Orzalli, M. H. A viral E3 ubiquitin ligase produced by herpes simplex virus 1 inhibits the NLRP1 inflammasome. J. Exp. Med. 221, e20231518 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cai, Q.-L., Knight, J. S., Verma, S. C., Zald, P. & Robertson, E. S. EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors. PLoS Pathog. 2, e116 (2006).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Odon, V., Georgana, I., Holley, J., Morata, J. & Maluquer de Motes, C. Novel class of viral ankyrin proteins targeting the host E3 ubiquitin ligase Cullin-2. J. Virol. 92, e01374-18 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bratke, K. A., McLysaght, A. & Rothenburg, S. A survey of host range genes in poxvirus genomes. Infect. Genet. Evol. 14, 406–425 (2013).

Article 
PubMed 

Google Scholar
 

Qiu, J. et al. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature 533, 120–124 (2016). This study describes the identification of the SidE family of proteins in Legionella, which ubiquitinates substrates using only one enzyme.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bhogaraju, S. et al. Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell 167, 1636–1649.e13 (2016). This paper describes the mechanism of phosphoribosyl-ubiquitination, with the key first step: the ADP-ribosylation of ubiquitin.

Article 
PubMed 

Google Scholar
 

Kalayil, S. et al. Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination. Nature 557, 734–738 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dong, Y. et al. Structural basis of ubiquitin modification by the Legionella effector SdeA. Nature 557, 674–678 (2018).

Article 
PubMed 

Google Scholar
 

Akturk, A. et al. Mechanism of phosphoribosyl-ubiquitination mediated by a single Legionella effector. Nature 557, 729–733 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, M. et al. Members of the Legionella pneumophila Sde family target tyrosine residues for phosphoribosyl-linked ubiquitination. RSC Chem. Biol. 2, 1509–1519 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kim, R. Q. et al. Development of ADPribosyl ubiquitin analogues to study enzymes involved in Legionella infection. Chem. A 27, 2506–2512 (2021).


Google Scholar
 

Shin, D. et al. Regulation of phosphoribosyl-linked serine ubiquitination by deubiquitinases DupA and DupB. Mol. Cell 77, 164–179.e6 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wan, M. et al. Deubiquitination of phosphoribosyl-ubiquitin conjugates by phosphodiesterase-domain–containing Legionella effectors. Proc. Natl Acad. Sci. USA 116, 23518–23526 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, T. et al. Legionella effector LnaB is a phosphoryl-AMPylase that impairs phosphosignalling. Nature 631, 393–401 (2024).

Article 
PubMed 

Google Scholar
 

Fu, J. et al. Legionella maintains host cell ubiquitin homeostasis by effectors with unique catalytic mechanisms. Nat. Commun. 15, 5953 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Z. et al. Legionella metaeffector MavL reverses ubiquitin ADP-ribosylation via a conserved arginine-specific macrodomain. Nat. Commun. 15, 2452 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kotewicz, K. M. et al. A single Legionella effector catalyzes a multistep ubiquitination pathway to rearrange tubular endoplasmic reticulum for replication. Cell Host Microbe 21, 169–181 (2017).

Article 
PubMed 

Google Scholar
 

Liu, Y. et al. Serine-ubiquitination regulates Golgi morphology and the secretory pathway upon Legionella infection. Cell Death Differ. 28, 2957–2969 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mukherjee, R. et al. Serine ubiquitination of SQSTM1 regulates NFE2L2-dependent redox homeostasis. Autophagy 21, 407–423 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ge, J. et al. Phosphoribosyl-linked serine ubiquitination of USP14 by the SidE family effectors of Legionella excludes p62 from the bacterial phagosome. Cell Rep. 42, 112817 (2023).

Article 
PubMed 

Google Scholar
 

Kotewicz, K. M. et al. Sde proteins coordinate ubiquitin utilization and phosphoribosylation to establish and maintain the Legionella replication vacuole. Nat. Commun. 15, 7479 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wan, M. et al. Phosphoribosyl modification of poly-ubiquitin chains at the Legionella-containing vacuole prohibiting autophagy adaptor recognition. Nat. Commun. 15, 7481 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mukherjee, R. et al. Phosphoribosyl ubiquitination of SNARE proteins regulates autophagy during Legionella infection. EMBO J. https://doi.org/10.1038/s44318-025-00483-4 (2025).

Bhogaraju, S. et al. Inhibition of bacterial ubiquitin ligases by SidJ-calmodulin catalysed glutamylation. Nature 572, 382–386 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gan, N. et al. Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase. Nature 572, 387–391 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Black, M. H. et al. Bacterial pseudokinase catalyzes protein polyglutamylation to inhibit the SidE-family ubiquitin ligases. Science 364, 787–792 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sulpizio, A. et al. Protein polyglutamylation catalyzed by the bacterial calmodulin-dependent pseudokinase SidJ. eLife 8, e51162 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Adams, M. et al. Structural basis for protein glutamylation by the Legionella pseudokinase SidJ. Nat. Commun. 12, 6174 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Song, L. et al. The Legionella effector SdjA is a bifunctional enzyme that distinctly regulates phosphoribosyl ubiquitination. mBio 12, e0231621 (2021).

Article 
PubMed 

Google Scholar
 

Jeong, K. C., Sexton, J. A. & Vogel, J. P. Spatiotemporal regulation of a Legionella pneumophila T4SS substrate by the metaeffector SidJ. PLoS Pathog. 11, e1004695 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jackson, W. T. et al. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol. 3, e156 (2005).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Prentice, E., Jerome, W. G., Yoshimori, T., Mizushima, N. & Denison, M. R. Coronavirus replication complex formation utilizes components of cellular autophagy. J. Biol. Chem. 279, 10136–10141 (2004).

Article 
PubMed 

Google Scholar
 

Wang, L., Tian, Y. & Ou, J. J. HCV induces the expression of rubicon and UVRAG to temporally regulate the maturation of autophagosomes and viral replication. PLoS Pathog. 11, e1004764 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Moreau, K. et al. Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages. Cell. Microbiol. 12, 1108–1123 (2010).

Article 
PubMed 

Google Scholar
 

Schnaith, A. et al. Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death. J. Biol. Chem. 282, 2695–2706 (2007).

Article 
PubMed 

Google Scholar
 

Gutierrez, M. G. et al. Autophagy induction favours the generation and maturation of the coxiella-replicative vacuoles. Cell. Microbiol. 7, 981–993 (2005).

Article 
PubMed 

Google Scholar
 

Romano, P. S., Gutierrez, M. G., Berón, W., Rabinovitch, M. & Colombo, M. I. The autophagic pathway is actively modulated by phase II Coxiella burnetii to efficiently replicate in the host cell. Cell. Microbiol. 9, 891–909 (2007).

Article 
PubMed 

Google Scholar
 

Vázquez, C. L. & Colombo, M. I. Coxiella burnetii modulates Beclin 1 and Bcl-2, preventing host cell apoptosis to generate a persistent bacterial infection. Cell Death Differ. 17, 421–438 (2010).

Article 
PubMed 

Google Scholar
 

Winchell, C. G. et al. Coxiella burnetii subverts p62/sequestosome 1 and activates Nrf2 signaling in human macrophages. Infect. Immun. 86, e00608-17 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kreibich, S. et al. Autophagy proteins promote repair of endosomal membranes damaged by the salmonella type three secretion system 1. Cell Host Microbe 18, 527–537 (2015). This study describes host cell autophagy used by Salmonella for repairing damage in its vacuole.

Article 
PubMed 

Google Scholar
 

Thieleke-Matos, C. et al. Host cell autophagy contributes to plasmodium liver development. Cell. Microbiol. 18, 437–450 (2016).

Article 
PubMed 

Google Scholar
 

Harrigan, J. A., Jacq, X., Martin, N. M. & Jackson, S. P. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat. Rev. Drug. Discov. 17, 57–78 (2018).

Article 
PubMed 

Google Scholar
 

Nanduri, B., Suvarnapunya, A. E., Venkatesan, M. & Edelmann, M. J. Deubiquitinating enzymes as promising drug targets for infectious diseases. Curr. Pharm. Des. 19, 3234–3247 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kennedy, C. R. et al. Covalent fragment screening to inhibit the E3 ligase activity of bacterial NEL enzymes SspH1 and SspH2. RSC Chem. Biol. https://doi.org/10.1039/d5cb00177c (2025).

Kimmey, J. M. & Stallings, C. L. Bacterial pathogens versus autophagy: implications for therapeutic interventions. Trends Mol. Med. 22, 1060–1076 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Andersson, A.-M. et al. Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages. Sci. Rep. 6, 28171 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lee, Y. J. et al. Chemical modulation of SQSTM1/p62-mediated xenophagy that targets a broad range of pathogenic bacteria. Autophagy 18, 2926–2945 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Setua, S. et al. Disrupting plasmodium UIS3–host LC3 interaction with a small molecule causes parasite elimination from host cells. Commun. Biol. 3, 1–10 (2020).

Article 

Google Scholar
 

Espinoza-Chávez, R. M. et al. Targeted protein degradation for infectious diseases: from basic biology to drug discovery. ACS Bio Med. Chem. Au 3, 32–45 (2023).

Article 
PubMed 

Google Scholar
 

Takahashi, D. et al. AUTACs: cargo-specific degraders using selective autophagy. Mol. Cell 76, 797–810.e10 (2019).

Article 
PubMed 

Google Scholar
 

de Wispelaere, M. et al. Small molecule degraders of the hepatitis C virus protease reduce susceptibility to resistance mutations. Nat. Commun. 10, 3468 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xu, Z. et al. Discovery of oseltamivir-based novel PROTACs as degraders targeting neuraminidase to combat H1N1 influenza virus. Cell Insight 1, 100030 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li, H. et al. Discovery of pentacyclic triterpenoid PROTACs as a class of effective hemagglutinin protein degraders. J. Med. Chem. 65, 7154–7169 (2022).

Article 
PubMed 

Google Scholar
 

Zhao, J. et al. An anti-influenza A virus microbial metabolite acts by degrading viral endonuclease PA. Nat. Commun. 13, 2079 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Desantis, J. et al. Indomethacin-based PROTACs as pan-coronavirus antiviral agents. Eur. J. Med. Chem. 226, 113814 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hahn, F. et al. Development of a PROTAC-based targeting strategy provides a mechanistically unique mode of anti-cytomegalovirus activity. Int. J. Mol. Sci. 22, 12858 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li, H. et al. PROTAC targeting cyclophilin A controls virus-induced cytokine storm. iScience 26, 107535 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Morreale, F. E. et al. BacPROTACs mediate targeted protein degradation in bacteria. Cell 185, 2338–2353.e18 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ishii, M. & Akiyoshi, B. Targeted protein degradation using deGradFP in Trypanosoma brucei. Wellcome Open. Res. 7, 175 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mangano, K. et al. VIPER-TACs leverage viral E3 ligases for disease-specific targeted protein degradation. Cell Chem. Biol. 32, 423–433.e9 (2025).

Article 
PubMed 

Google Scholar
 

Si, L. et al. Generation of a live attenuated influenza A vaccine by proteolysis targeting. Nat. Biotechnol. 40, 1370–1377 (2022). This study describes leveraging the proteasome to produce attenuated viruses that can be used for vaccination.

Article 
PubMed 

Google Scholar
 

Zhong, G., Chang, X., Xie, W. & Zhou, X. Targeted protein degradation: advances in drug discovery and clinical practice. Sig. Transduct. Target. Ther. 9, 308 (2024).

Article 

Google Scholar
 

Mello-Vieira, J., Bopp, T. & Dikic, I. Ubiquitination and cell-autonomous immunity. Curr. Opin. Immunol. 84, 102368 (2023).

Article 
PubMed 

Google Scholar
 

Goncharov, T. et al. Simultaneous substrate and ubiquitin modification recognition by bispecific antibodies enables detection of ubiquitinated RIP1 and RIP2. Sci. Signal. 17, eabn1101 (2024).

Article 
PubMed 

Google Scholar
 

Słabicki, M. et al. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 585, 293–297 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Huang, H.-T. et al. Ubiquitin-specific proximity labeling for the identification of E3 ligase substrates. Nat. Chem. Biol. 20, 1227–1236 (2024).

Article 
PubMed 

Google Scholar
 

Mukhopadhyay, U. et al. A ubiquitin-specific, proximity-based labeling approach for the identification of ubiquitin ligase substrates. Sci. Adv. 10, eadp3000 (2024). Together with Huang et al. (2024), this study describes a proximity-labelling method to detect substrates of E3 ligases.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xu, G. et al. Multiomics approach reveals the ubiquitination-specific processes hijacked by SARS-CoV-2. Signal. Transduct. Target. Ther. 7, 312 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Amstein, L. K. et al. Mathematical modeling of the molecular switch of TNFR1-mediated signaling pathways applying Petri net formalism and in silico knockout analysis. PLoS Comput. Biol. 18, e1010383 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hochstrasser, M. Origin and function of ubiquitin-like proteins. Nature 458, 422–429 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Shin, D. et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 587, 657–662 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dzimianski, J. V., Scholte, F. E. M., Bergeron, É & Pegan, S. D. ISG15: it’s complicated. J. Mol. Biol. 431, 4203–4216 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ma, X., Zhao, C., Xu, Y. & Zhang, H. Roles of host SUMOylation in bacterial pathogenesis. Infect. Immun. 91, e00283–23 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fan, Y. et al. SUMOylation in viral replication and antiviral defense. Adv. Sci. 9, 2104126 (2022).

Article 

Google Scholar
 

Zhou, X. et al. UFMylation: a ubiquitin-like modification. Trends Biochem. Sci. 49, 52–67 (2024).

Article 
PubMed 

Google Scholar
 

Zhang, S., Yu, Q., Li, Z., Zhao, Y. & Sun, Y. Protein neddylation and its role in health and diseases. Sig. Transduct. Target. Ther. 9, 1–36 (2024).

Article 

Google Scholar
 

Macek, B. et al. Protein post-translational modifications in bacteria. Nat. Rev. Microbiol. 17, 651–664 (2019).

Article 
PubMed 

Google Scholar
 

Pearce, M. J., Mintseris, J., Ferreyra, J., Gygi, S. P. & Darwin, K. H. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322, 1104–1107 (2008).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cerda-Maira, F. A. et al. Molecular analysis of the prokaryotic ubiquitin-like protein (Pup) conjugation pathway in Mycobacterium tuberculosis. Mol. Microbiol. 77, 1123–1135 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Imkamp, F. et al. Dop functions as a depupylase in the prokaryotic ubiquitin-like modification pathway. EMBO Rep. 11, 791–797 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Millman, A., Melamed, S., Amitai, G. & Sorek, R. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nat. Microbiol. 5, 1608–1615 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jenson, J. M., Li, T., Du, F., Ea, C.-K. & Chen, Z. J. Ubiquitin-like conjugation by bacterial cGAS enhances anti-phage defence. Nature 616, 326–331 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ledvina, H. E. et al. An E1–E2 fusion protein primes antiviral immune signalling in bacteria. Nature 616, 319–325 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Millman, A. et al. An expanded arsenal of immune systems that protect bacteria from phages. Cell Host Microbe 30, 1556–1569.e5 (2022).

Article 
PubMed 

Google Scholar
 

Hör, J., Wolf, S. G. & Sorek, R. Bacteria conjugate ubiquitin-like proteins to interfere with phage assembly. Nature 631, 850–856 (2024).

Article 
PubMed 

Google Scholar
 

Chambers, L. R. et al. A eukaryotic-like ubiquitination system in bacterial antiviral defence. Nature 631, 843–849 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cury, J. et al. Conservation of antiviral systems across domains of life reveals immune genes in humans. Cell Host Microbe 32, 1594–1607.e5 (2024). This study describes an exploration of bacterial immunity systems in human genome yields novel pathways of cell-autonomous immunity.

Article 
PubMed 

Google Scholar