Louis, D. N. et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 23, 1231–1251 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

Article 
PubMed 
CAS 

Google Scholar
 

Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2016–2020. Neuro Oncol. 25, iv1–iv99 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

White, K. et al. New hints towards a precision medicine strategy for IDH wild-type glioblastoma. Ann. Oncol. 31, 1679–1692 (2020).

Article 
PubMed 
CAS 

Google Scholar
 

Yabo, Y. A., Niclou, S. P. & Golebiewska, A. Cancer cell heterogeneity and plasticity: a paradigm shift in glioblastoma. Neuro Oncol. 24, 669–682 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Galassi, C., Chan, T. A., Vitale, I. & Galluzzi, L. The hallmarks of cancer immune evasion. Cancer Cell 42, 1825–1863 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Galluzzi, L., Smith, K. N., Liston, A. & Garg, A. D. The diversity of CD8+ T cell dysfunction in cancer and viral infection. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-025-01161-6 (2025).

Article 
PubMed 

Google Scholar
 

Wu, B., Zhang, B., Li, B., Wu, H. & Jiang, M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct. Target. Ther. 9, 274 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Neftel, C. et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835–849 (2019).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Wang, L. et al. A single-cell atlas of glioblastoma evolution under therapy reveals cell-intrinsic and cell-extrinsic therapeutic targets. Nat. Cancer 3, 1534–1552 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Dirkse, A. et al. Stem cell-associated heterogeneity in glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat. Commun. 10, 1787 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, Q. et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32, 42–56 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Greenwald, A. C. et al. Integrative spatial analysis reveals a multi-layered organization of glioblastoma. Cell 187, 2485–2501 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Nomura, M. et al. The multilayered transcriptional architecture of glioblastoma ecosystems. Nat. Genet. 57, 1155–1167 (2025).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Faust Akl, C. et al. Glioblastoma-instructed astrocytes suppress tumour-specific T cell immunity. Nature 643, 219–229 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Wälchli, T. et al. Single-cell atlas of the human brain vasculature across development, adulthood and disease. Nature 632, 603–613 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Khan, F. et al. Macrophages and microglia in glioblastoma: heterogeneity, plasticity, and therapy. J. Clin. Invest. https://doi.org/10.1172/JCI163446 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sharma, P., Aaroe, A., Liang, J. & Puduvalli, V. K. Tumor microenvironment in glioblastoma: current and emerging concepts. Neurooncol. Adv. 5, vdad009 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Bikfalvi, A. et al. Challenges in glioblastoma research: focus on the tumor microenvironment. Trends Cancer 9, 9–27 (2023); erratum 9, 692 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Habashy, K. J., Mansour, R., Moussalem, C., Sawaya, R. & Massaad, M. J. Challenges in glioblastoma immunotherapy: mechanisms of resistance and therapeutic approaches to overcome them. Br. J. Cancer 127, 976–987 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Arrieta, V. A. et al. Immune checkpoint blockade in glioblastoma: from tumor heterogeneity to personalized treatment. J. Clin. Invest. https://doi.org/10.1172/JCI163447 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bunse, L., Bunse, T., Kilian, M., Quintana, F. J. & Platten, M. The immunology of brain tumors. Sci. Immunol. 10, eads0449 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Mahdi, J., Trivedi, V. & Monje, M. The promise of immunotherapy for central nervous system tumours. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-025-01227-5 (2025).

Article 
PubMed 

Google Scholar
 

Hambardzumyan, D. & Bergers, G. Glioblastoma: defining tumor niches. Trends Cancer 1, 252–265 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dermitzakis, I. et al. CNS border-associated macrophages: ontogeny and potential implication in disease. Curr. Issues Mol. Biol. 45, 4285–4300 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395 (2018).

Article 
PubMed 
CAS 

Google Scholar
 

Friebel, E. et al. Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes. Cell 181, 1626–1642 (2020).

Article 
PubMed 
CAS 

Google Scholar
 

Pombo Antunes, A. R. et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat. Neurosci. 24, 595–610 (2021).

Article 
PubMed 
CAS 

Google Scholar
 

Ochocka, N. et al. Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages. Nat. Commun. 12, 1151 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Yabo, Y. A. et al. Glioblastoma-instructed microglia transition to heterogeneous phenotypic states with phagocytic and dendritic cell-like features in patient tumors and patient-derived orthotopic xenografts. Genome Med. 16, 51 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Klemm, F. et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell 181, 1643–1660 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Miller, T. E. et al. Programs, origins and immunomodulatory functions of myeloid cells in glioma. Nature https://doi.org/10.1038/s41586-025-08633-8 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

González-Tablas Pimenta, M. et al. Tumor cell and immune cell profiles in primary human glioblastoma: impact on patient outcome. Brain Pathol. 31, 365–380 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bayik, D. et al. Myeloid-derived suppressor cell subsets drive glioblastoma growth in a sex-specific manner. Cancer Discov. 10, 1210–1225 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Jackson, C. et al. Distinct myeloid-derived suppressor cell populations in human glioblastoma. Science 387, eabm5214 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Zhao, J. et al. Disease-specific suppressive granulocytes participate in glioma progression. Cell Rep. 43, 115014 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Maas, R. R. et al. The local microenvironment drives activation of neutrophils in human brain tumors. Cell 186, 4546–4566 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Yang, Y. et al. Large-scale bulk and single-cell RNA sequencing combined with machine learning reveals glioblastoma-associated neutrophil heterogeneity and establishes a VEGFA+ neutrophil prognostic model. Biol. Direct 20, 45 (2025).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Chen, Z. et al. Monocyte depletion enhances neutrophil influx and proneural to mesenchymal transition in glioblastoma. Nat. Commun. 14, 1839 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Chanoch-Myers, R., Wider, A., Suva, M. L. & Tirosh, I. Elucidating the diversity of malignant mesenchymal states in glioblastoma by integrative analysis. Genome Med. 14, 106 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Rashidi, A. et al. Myeloid cell-derived creatine in the hypoxic niche promotes glioblastoma growth. Cell Metab. 36, 62–77 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Mitsdoerffer, M. et al. The glioblastoma multiforme tumor site promotes the commitment of tumor-infiltrating lymphocytes to the TH17 lineage in humans. Proc. Natl Acad. Sci. USA 119, e2206208119 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Andaloussi, A. E. & Lesniak, M. S. An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro Oncol. 8, 234–243 (2006).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mohme, M. et al. Immunophenotyping of newly diagnosed and recurrent glioblastoma defines distinct immune exhaustion profiles in peripheral and tumor-infiltrating lymphocytes. Clin. Cancer Res. 24, 4187–4200 (2018).

Article 
PubMed 
CAS 

Google Scholar
 

van Hooren, L. et al. Agonistic CD40 therapy induces tertiary lymphoid structures but impairs responses to checkpoint blockade in glioma. Nat. Commun. 12, 4127 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cakmak, P. et al. Spatial immune profiling defines a subset of human gliomas with functional tertiary lymphoid structures. Immunity 58, 2025–2863.e2848 (2025).

Article 

Google Scholar
 

Wang, F. et al. Comparison of tumor immune environment between newly diagnosed and recurrent glioblastoma including matched patients. J. Neurooncol. 159, 163–175 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Breznik, B. et al. Infiltrating natural killer cells bind, lyse and increase chemotherapy efficacy in glioblastoma stem-like tumorospheres. Commun. Biol. 5, 436 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Kmiecik, J. et al. Elevated CD3+ and CD8+ tumor-infiltrating immune cells correlate with prolonged survival in glioblastoma patients despite integrated immunosuppressive mechanisms in the tumor microenvironment and at the systemic level. J. Neuroimmunol. 264, 71–83 (2013).

Article 
PubMed 
CAS 

Google Scholar
 

Hou, D. et al. Antigen-presenting B cells promote TCF-1+ PD1− stem-like CD8+ T-cell proliferation in glioblastoma. Front. Immunol. 14, 1295218 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gao, J. et al. Infiltrating plasma cells maintain glioblastoma stem cells through IgG–tumor binding. Cancer Cell https://doi.org/10.1016/j.ccell.2024.12.006 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Woroniecka, K. et al. T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma. Clin. Cancer Res. 24, 4175–4186 (2018).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Chongsathidkiet, P. et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat. Med. 24, 1459–1468 (2018).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Magri, S. et al. Sustained accumulation of blood-derived macrophages in the immune microenvironment of patients with recurrent glioblastoma after therapy. Cancers (Basel) 13, 6178 (2021).

Article 
PubMed 
CAS 

Google Scholar
 

Pires-Afonso, Y. et al. Elucidating tumour-associated microglia/macrophage diversity along glioblastoma progression and under ACOD1 deficiency. Mol. Oncol. 16, 3167–3191 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Kirschenbaum, D. et al. Time-resolved single-cell transcriptomics defines immune trajectories in glioblastoma. Cell 187, 149–165 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Sattiraju, A. et al. Hypoxic niches attract and sequester tumor-associated macrophages and cytotoxic T cells and reprogram them for immunosuppression. Immunity 56, 1825–1843 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Lohr, J. et al. Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-β. Clin. Cancer Res. 17, 4296–4308 (2011).

Article 
PubMed 
CAS 

Google Scholar
 

Dobersalske, C. et al. Cranioencephalic functional lymphoid units in glioblastoma. Nat. Med. 30, 2947–2956 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Koh, B. I. et al. Adult skull bone marrow is an expanding and resilient haematopoietic reservoir. Nature 636, 172–181 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Du, L. et al. Both IDO1 and TDO contribute to the malignancy of gliomas via the Kyn–AhR–AQP4 signaling pathway. Signal Transduct. Target. Ther. 5, 10 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Takenaka, M. C. et al. Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nat. Neurosci. 22, 729–740 (2019).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Didenko, V. V., Ngo, H. N., Minchew, C. & Baskin, D. S. Apoptosis of T lymphocytes invading glioblastomas multiforme: a possible tumor defense mechanism. J. Neurosurg. 96, 580–584 (2002).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Badie, B., Schartner, J., Prabakaran, S., Paul, J. & Vorpahl, J. Expression of Fas ligand by microglia: possible role in glioma immune evasion. J. Neuroimmunol. 120, 19–24 (2001).

Article 
PubMed 
CAS 

Google Scholar
 

Butt, N. S. et al. Major histocompatibility class-I (MHC-I) downregulation in glioblastoma is a poor prognostic factor but not a predictive indicator for treatment failure. Pathol. Res. Pract. 250, 154816 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Yang, W., Li, Y., Gao, R., Xiu, Z. & Sun, T. MHC class I dysfunction of glioma stem cells escapes from CTL-mediated immune response via activation of Wnt/β-catenin signaling pathway. Oncogene 39, 1098–1111 (2020).

Article 
PubMed 
CAS 

Google Scholar
 

Zhang, M. et al. Anti-CD47 treatment stimulates phagocytosis of glioblastoma by M1 and M2 polarized macrophages and promotes M1 polarized macrophages in vivo. PLoS ONE 11, e0153550 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wu, M. et al. Phagocytosis of glioma cells enhances the immunosuppressive phenotype of bone marrow-derived macrophages. Cancer Res. 83, 771–785 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Schmassmann, P. et al. Targeting the Siglec–sialic acid axis promotes antitumor immune responses in preclinical models of glioblastoma. Sci. Transl. Med. 15, eadf5302 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

von Roemeling, C. A. et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat. Commun. 11, 1508 (2020).

Article 

Google Scholar
 

Mei, Y. et al. Siglec-9 acts as an immune-checkpoint molecule on macrophages in glioblastoma, restricting T-cell priming and immunotherapy response. Nat. Cancer 4, 1273–1291 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Gordon, S. R. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495–499 (2017).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Jadus, M. R. et al. Macrophages kill T9 glioma tumor cells bearing the membrane isoform of macrophage colony stimulating factor through a phagocytosis-dependent pathway. J. Immunol. 160, 361–368 (1998).

Article 
PubMed 
CAS 

Google Scholar
 

Afzal, A. et al. Phagocytosis checkpoints in glioblastoma: CD47 and beyond. Curr. Issues Mol. Biol. 46, 7795–7811 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Kopatz, J. et al. Siglec-h on activated microglia for recognition and engulfment of glioma cells. Glia 61, 1122–1133 (2013).

Article 
PubMed 

Google Scholar
 

Kim, H.-J. et al. Blood monocyte-derived CD169+ macrophages contribute to antitumor immunity against glioblastoma. Nat. Commun. 13, 6211 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Saavedra-López, E. et al. Phagocytic glioblastoma-associated microglia and macrophages populate invading pseudopalisades. Brain Commun. 2, fcz043 (2020).

Article 
PubMed 

Google Scholar
 

Friedrich, M. et al. Dysfunctional dendritic cells limit antigen-specific T cell response in glioma. Neuro Oncol. 25, 263–276 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Carenza, C. et al. Perioperative corticosteroid treatment impairs tumor-infiltrating dendritic cells in patients with newly diagnosed adult-type diffuse gliomas. Front. Immunol. 13, 1074762 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Chang, A. L. et al. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res. 76, 5671–5682 (2016).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Guan, X. et al. CTLA4-mediated immunosuppression in glioblastoma is associated with the infiltration of macrophages in the tumor microenvironment. J. Inflamm. Res. 14, 7315–7329 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Abdelfattah, N. et al. Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target. Nat. Commun. 13, 767 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Lerner, E. C. et al. CD8+ T cells maintain killing of MHC-I-negative tumor cells through the NKG2D–NKG2DL axis. Nat. Cancer 4, 1258–1272 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Hu, X. et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 30, 229–243 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Song, E. et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 577, 689–694 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Blobner, J. et al. Comparative evaluation of T-cell receptors in experimental glioma-draining lymph nodes. Neurooncol. Adv. 3, vdab147 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Ravi, V. M. et al. T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10. Nat. Commun. 13, 925 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Polania, J. W. et al. Antigen presentation by tumor-associated macrophages drives T cells from a progenitor exhaustion state to terminal exhaustion. Immunity https://doi.org/10.1016/j.immuni.2024.11.026 (2024).

Article 

Google Scholar
 

Kilian, M. et al. MHC class II-restricted antigen presentation is required to prevent dysfunction of cytotoxic T cells by blood-borne myeloids in brain tumors. Cancer Cell 41, 235–251 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Vijayanathan, Y. & Ho, I. A. W. The impact of metabolic rewiring in glioblastoma: the immune landscape and therapeutic strategies. Int. J. Mol. Sci. 26, 669 (2025).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

De Leo, A. et al. Glucose-driven histone lactylation promotes the immunosuppressive activity of monocyte-derived macrophages in glioblastoma. Immunity 57, 1105–1123 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, S. et al. Oncolytic viruses engineered to enforce cholesterol efflux restore tumor-associated macrophage phagocytosis and anti-tumor immunity in glioblastoma. Nat. Commun. 14, 4367 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Governa, V. et al. Protumoral lipid droplet-loaded macrophages are enriched in human glioblastoma and can be therapeutically targeted. Sci. Transl. Med. 16, eadk1168 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Kloosterman, D. J. et al. Macrophage-mediated myelin recycling fuels brain cancer malignancy. Cell 187, 5336–5356 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Huff, W. X. et al. Aging- and tumor-mediated increase in CD8+CD28− T cells might impose a strong barrier to success of immunotherapy in glioblastoma. Immunohorizons 5, 395–409 (2021).

Article 
PubMed 
CAS 

Google Scholar
 

Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 22, 205–215 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Lin, A. J. et al. Impact of concurrent versus adjuvant chemotherapy on the severity and duration of lymphopenia in glioma patients treated with radiation therapy. J. Neurooncol. 136, 403–411 (2018).

Article 
PubMed 

Google Scholar
 

Karachi, A. et al. Modulation of temozolomide dose differentially affects T-cell response to immune checkpoint inhibition. Neuro Oncol. 21, 730–741 (2019).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Varn, F. S. et al. Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell 185, 2184–2199 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Spitzer, A. et al. Deciphering the longitudinal trajectories of glioblastoma ecosystems by integrative single-cell genomics. Nat. Genet. 57, 1168–1178 (2025).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Loussouarn, D. et al. Spatial distribution of immune cells in primary and recurrent glioblastoma: a small case study. Cancers (Basel) 15, 3256 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Shekarian, T. et al. Multidimensional analysis of matched primary and recurrent glioblastoma identifies contributors to tumor recurrence influencing time to relapse. J. Neuropathol. Exp. Neurol. 84, 45–58 (2024).

Article 
PubMed Central 

Google Scholar
 

Onubogu, U. et al. Spatial analysis of recurrent glioblastoma reveals perivascular niche organization. JCI Insight https://doi.org/10.1172/jci.insight.179853 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

van Hooren, L. et al. CD103+ regulatory T cells underlie resistance to radio-immunotherapy and impair CD8+ T cell activation in glioblastoma. Nat. Cancer 4, 665–681 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tamura, R. et al. Alterations of the tumor microenvironment in glioblastoma following radiation and temozolomide with or without bevacizumab. Ann. Transl. Med. 8, 297 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, W. et al. Glioblastoma pseudoprogression and true progression reveal spatially variable transcriptional differences. Acta Neuropathol. Commun. 11, 192 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Knudsen, A. M. et al. Characterisation of the tumour microenvironment in primary and recurrent glioblastomas. Neuropathol. Appl. Neurobiol. 50, e13012 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Touat, M. et al. Mechanisms and therapeutic implications of hypermutation in gliomas. Nature 580, 517–523 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Gromeier, M. et al. Very low mutation burden is a feature of inflamed recurrent glioblastomas responsive to cancer immunotherapy. Nat. Commun. 12, 352 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Akkari, L. et al. Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci. Transl. Med. 12, eaaw7843 (2020).

Article 
PubMed 
CAS 

Google Scholar
 

Watson, S. S. et al. Fibrotic response to anti-CSF-1R therapy potentiates glioblastoma recurrence. Cancer Cell 42, 1507–1527 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Watson, S. S. et al. Microenvironmental reorganization in brain tumors following radiotherapy and recurrence revealed by hyperplexed immunofluorescence imaging. Nat. Commun. 15, 3226 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Ha, W. et al. Ibudilast sensitizes glioblastoma to temozolomide by targeting macrophage migration inhibitory factor (MIF). Sci. Rep. 9, 2905 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sørensen, M. D. et al. Microglia induce an interferon-stimulated gene expression profile in glioblastoma and increase glioblastoma resistance to temozolomide. Neuropathol. Appl. Neurobiol. 50, e13016 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yeo, A. T. et al. Single-cell RNA sequencing reveals evolution of immune landscape during glioblastoma progression. Nat. Immunol. 23, 971–984 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Tamura, R. et al. Persistent restoration to the immunosupportive tumor microenvironment in glioblastoma by bevacizumab. Cancer Sci. 110, 499–508 (2019).

Article 
PubMed 
CAS 

Google Scholar
 

Wei, Q. et al. TNFα secreted by glioma associated macrophages promotes endothelial activation and resistance against anti-angiogenic therapy. Acta Neuropathol. Commun. 9, 67 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Aslan, K. et al. Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat. Commun. 11, 931 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Lee-Chang, C. et al. Myeloid-derived suppressive cells promote B cell-mediated immunosuppression via transfer of PD-L1 in glioblastoma. Cancer Immunol. Res. 7, 1928–1943 (2019).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Chryplewicz, A. et al. Cancer cell autophagy, reprogrammed macrophages, and remodeled vasculature in glioblastoma triggers tumor immunity. Cancer Cell 40, 1111–1127 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Klein, E., Hau, A.-C., Oudin, A., Golebiewska, A. & Niclou, S. P. Glioblastoma organoids: pre-clinical applications and challenges in the context of immunotherapy. Front. Oncol. 10, 604121 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Steindl, A. & Valiente, M. Potential of ex vivo organotypic slice cultures in neuro-oncology. Neuro Oncol. 27, 338–351 (2025).

Article 
PubMed 

Google Scholar
 

Wang, G. & Wang, W. Advanced cell therapies for glioblastoma. Front. Immunol. https://doi.org/10.3389/fimmu.2022.904133 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Choi, B. D., Maus, M. V., June, C. H. & Sampson, J. H. Immunotherapy for glioblastoma: adoptive T-cell strategies. Clin. Cancer Res. 25, 2042–2048 (2019).

Article 
PubMed 
CAS 

Google Scholar
 

Bagley, S. J., Desai, A. S., Linette, G. P., June, C. H. & O’Rourke, D. M. CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro Oncol. 20, 1429–1438 (2018).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Khan, S. M. et al. Impact of CD4 T cells on intratumoral CD8 T-cell exhaustion and responsiveness to PD-1 blockade therapy in mouse brain tumors. J. Immunother. Cancer https://doi.org/10.1136/jitc-2022-005293 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Reardon, D. A. et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 6, 1003–1010 (2020).

Article 
PubMed 

Google Scholar
 

Lim, M. et al. Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro Oncol. 24, 1935–1949 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Duerinck, J. et al. Intracerebral administration of CTLA-4 and PD-1 immune checkpoint blocking monoclonal antibodies in patients with recurrent glioblastoma: a phase I clinical trial. J. Immunother. Cancer 9, e002296 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Omuro, A. et al. Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: an international randomized phase III trial. Neuro Oncol. 25, 123–134 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Lee, A. H. et al. Neoadjuvant PD-1 blockade induces T cell and cDC1 activation but fails to overcome the immunosuppressive tumor associated macrophages in recurrent glioblastoma. Nat. Commun. 12, 6938 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Schalper, K. A. et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat. Med. 25, 470–476 (2019).

Article 
PubMed 
CAS 

Google Scholar
 

Cloughesy, T. F. et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat. Med. 25, 477–486 (2019).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Zhao, J. et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat. Med. 25, 462–469 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Begley, S. L., O’Rourke, D. M. & Binder, Z. A. CAR T cell therapy for glioblastoma: a review of the first decade of clinical trials. Mol. Ther. https://doi.org/10.1016/j.ymthe.2025.03.004 (2025).

Article 
PubMed 

Google Scholar
 

Goutnik, M. et al. Advancements in chimeric antigen receptor-expressing T-cell therapy for glioblastoma multiforme: literature review and future directions. Neurooncol. Adv. 6, vdae025 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Hatae, R. et al. Enhancing CAR-T cell metabolism to overcome hypoxic conditions in the brain tumor microenvironment. JCI Insight https://doi.org/10.1172/jci.insight.177141 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Brown, C. E. et al. Locoregional delivery of IL-13Rα2-targeting CAR-T cells in recurrent high-grade glioma: a phase 1 trial. Nat. Med. 30, 1001–1012 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Choi, B. D. et al. Intraventricular CARv3-TEAM-E T cells in recurrent glioblastoma. N. Engl. J. Med. 390, 1290–1298 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Bagley, S. J. et al. Intrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: phase 1 trial interim results. Nat. Med. 30, 1320–1329 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Chih, Y.-C. et al. Vaccine-induced T cell receptor T cell therapy targeting a glioblastoma stemness antigen. Nat. Commun. 16, 1262 (2025).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Singh, K. et al. IL-7-mediated expansion of autologous lymphocytes increases CD8+ VLA-4 expression and accumulation in glioblastoma models. J. Clin. Invest. https://doi.org/10.1172/jci181471 (2025).

Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Martins, T. A. et al. Enhancing anti-EGFRvIII CAR T cell therapy against glioblastoma with a paracrine SIRPγ-derived CD47 blocker. Nat. Commun. 15, 9718 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Hutter, G. et al. Microglia are effector cells of CD47–SIRPα antiphagocytic axis disruption against glioblastoma. Proc. Natl Acad. Sci. USA 116, 997–1006 (2019).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Gholamin, S. et al. Irradiation or temozolomide chemotherapy enhances anti-CD47 treatment of glioblastoma. Innate Immun. 26, 130–137 (2020).

Article 
PubMed 
CAS 

Google Scholar
 

Amoozgar, Z. et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat. Commun. 12, 2582 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Galvez-Cancino, F. et al. Regulatory T cell depletion promotes myeloid cell activation and glioblastoma response to anti-PD1 and tumor-targeting antibodies. Immunity 58, 1236–1253 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Butowski, N. et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro Oncol. 18, 557–564 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Quail, D. F. et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352, aad3018 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sun, R. et al. TREM2 inhibition triggers antitumor cell activity of myeloid cells in glioblastoma. Sci. Adv. 9, eade3559 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Peshoff, M. M. et al. Triggering receptor expressed on myeloid cells 2 (TREM2) regulates phagocytosis in glioblastoma. Neuro Oncol. 26, 826–839 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Zhong, J. et al. Distinct roles of TREM2 in central nervous system cancers and peripheral cancers. Cancer Cell 42, 968–984 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Lorimer, I. A. J. Potential roles for efferocytosis in glioblastoma immune evasion. Neurooncol. Adv. 6, vdae012 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Parker, S. et al. Immunotoxin–αCD40 therapy activates innate and adaptive immunity and generates a durable antitumor response in glioblastoma models. Sci. Transl. Med. 15, eabn5649 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Chen, D. et al. CTLA-4 blockade induces a microglia–Th1 cell partnership that stimulates microglia phagocytosis and anti-tumor function in glioblastoma. Immunity 56, 2086–2104 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Delamarre, L., Pack, M., Chang, H., Mellman, I. & Trombetta, E. S. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307, 1630–1634 (2005).

Article 
PubMed 
CAS 

Google Scholar
 

Zhao, B., Kilian, M., Bunse, T., Platten, M. & Bunse, L. Tumor-reactive T helper cells in the context of vaccination against glioma. Cancer Cell 41, 1829–1834 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Sampson, J. H. et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 28, 4722–4729 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Liau, L. M. et al. Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: a phase 3 prospective externally controlled cohort trial. JAMA Oncol. 9, 112–121 (2023).

Article 
PubMed 

Google Scholar
 

Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).

Article 
PubMed 
CAS 

Google Scholar
 

Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234–239 (2019).

Article 
PubMed 
CAS 

Google Scholar
 

Latzer, P. et al. A real-world observation of patients with glioblastoma treated with a personalized peptide vaccine. Nat. Commun. 15, 6870 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Tabatabai, G. et al. Treatment of glioblastoma patients with personalized vaccines outside clinical trials: lessons ignored? Neuro Oncol. https://doi.org/10.1093/neuonc/noae225 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kim, T.-G. et al. Immunological factors relating to the antitumor effect of temozolomide chemoimmunotherapy in a murine glioma model. Clin. Vaccine Immunol. 17, 143–153 (2010).

Article 
PubMed 
CAS 

Google Scholar
 

Long, G. V. et al. Neoadjuvant triplet immune checkpoint blockade in newly diagnosed glioblastoma. Nat. Med. https://doi.org/10.1038/s41591-025-03512-1 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ling, A. L. et al. Serial multiomics uncovers anti-glioblastoma responses not evident by routine clinical analyses. Sci. Transl. Med. 17, eadv2881 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Chevaleyre, C. et al. Efficient PD-L1 imaging of murine glioblastoma with FUS-aided immunoPET by leveraging FcRn–antibody interaction. Theranostics 13, 5584–5596 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Dar, D. et al. Imaging PD-L1 in the brain—journey from the lab to the clinic. Neuro Oncol. 27, 567–582 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Bettegowda, C. et al. Preanalytical variables and analytes in liquid biopsy approach for brain tumors: a comprehensive review and recommendations from the RANO Group and the Brain Liquid Biopsy Consortium. Neuro Oncol. https://doi.org/10.1093/neuonc/noaf140 (2025).

Article 
PubMed 

Google Scholar
 

De Vleeschouwer, S. et al. Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin. Cancer Res. 14, 3098–3104 (2008).

Article 
PubMed 

Google Scholar