Allen, C. D. C., Okada, T., Tang, H. L. & Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

Article 

Google Scholar
 

Victora, G. D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010).

Article 

Google Scholar
 

Manafi-Farid, R. et al. ImmunoPET: antibody-based PET imaging in solid tumors. Front. Med. 9, 916693 (2022).

Article 

Google Scholar
 

Dewulf, J., Adhikari, K., Vangestel, C., Wyngaert, T. V. D. & Elvas, F. Development of antibody immuno-PET/SPECT radiopharmaceuticals for imaging of oncological disorders — an update. Cancers 12, 1868 (2020).

Article 

Google Scholar
 

Gawne, P. J., Man, F., Blower, P. J. & de Rosales, T. M R. Direct cell radiolabeling for in vivo cell tracking with PET and SPECT imaging. Chem. Rev. 122, 10266–10318 (2022).

Article 

Google Scholar
 

Dev, I. D., Puranik, A. D., Singh, B. & Prasad, V. Current and future perspectives of PDL1 PET and SPECT imaging. Semin. Nucl. Med. 54, 966–975 (2024).

Article 

Google Scholar
 

Hegi-Johnson, F. et al. Imaging immunity in patients with cancer using positron emission tomography. npj Precis. Oncol. 6, 1–15 (2022).


Google Scholar
 

van Rij, C. M. et al. Imaging of prostate cancer with immuno-PET and immuno-SPECT using a radiolabeled anti-EGP-1 monoclonal antibody. J. Nucl. Med. 52, 1601–1607 (2011).

Article 

Google Scholar
 

Helfer, B. M. et al. Functional assessment of human dendritic cells labeled for in vivo 19F magnetic resonance imaging cell tracking. Cytotherapy 12, 238–250 (2010).

Article 

Google Scholar
 

Ahrens, E. T., Flores, R., Xu, H. & Morel, P. A. In vivo imaging platform for tracking immunotherapeutic cells. Nat. Biotechnol. 23, 983–987 (2005).

Article 

Google Scholar
 

Lin, E. & Alessio, A. What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? J. Cardiovasc. Comput. Tomogr. 3, 403–408 (2009).

Article 

Google Scholar
 

Wang, L. V. & Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 13, 627–638 (2016).

Article 

Google Scholar
 

Zhang, Y. et al. Activatable polymeric nanoprobe for near-infrared fluorescence and photoacoustic imaging of T lymphocytes. Angew. Chem. 133, 5986–5992 (2021).

Article 

Google Scholar
 

Lin, L. & Wang, L. V. The emerging role of photoacoustic imaging in clinical oncology. Nat. Rev. Clin. Oncol. 19, 365–384 (2022).

Article 

Google Scholar
 

Qin, Z. et al. Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping. Nat. Biotechnol. 40, 1663–1671 (2022).

Article 

Google Scholar
 

Diao, S. et al. Biological imaging without autofluorescence in the second near-infrared region. Nano Res. 8, 3027–3034 (2015).

Article 

Google Scholar
 

Wu, Y. et al. First clinical applications for the NIR-II imaging with ICG in microsurgery. Front. Bioeng. Biotechnol. 10, 1042546 (2022).

Article 

Google Scholar
 

Wang, F. et al. In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors. Nat. Nanotechnol. 17, 653–660 (2022).

Article 

Google Scholar
 

Baghdasaryan, A. et al. Phosphorylcholine-conjugated gold-molecular clusters improve signal for lymph node NIR-II fluorescence imaging in preclinical cancer models. Nat. Commun. 13, 5613 (2022).

Article 

Google Scholar
 

Wang, F., Zhong, Y., Bruns, O., Liang, Y. & Dai, H. In vivo NIR-II fluorescence imaging for biology and medicine. Nat. Photon. 18, 535–547 (2024).

Article 

Google Scholar
 

Bakker, G.-J. et al. Intravital deep-tumor single-beam 3-photon, 4-photon, and harmonic microscopy. eLife 11, e63776 (2022).

Article 

Google Scholar
 

Wang, T., Chen, Y., Wang, B. & Wu, M. Recent progress of second near-infrared (NIR-II) fluorescence microscopy in bioimaging. Front. Physiol. 14, 1126805 (2023).

Article 

Google Scholar
 

Deng, X. et al. In vivo deep-brain 2-photon fluorescent microscopy labeled with near-infrared dyes excited at the 1700 nm window. Anal. Chim. Acta 1255, 341118 (2023).

Article 

Google Scholar
 

Pittet, M. J. & Weissleder, R. Intravital imaging. Cell 147, 983–991 (2011).

Article 

Google Scholar
 

Welsher, K. et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4, 773–780 (2009).

Article 

Google Scholar
 

Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016).

Article 

Google Scholar
 

Yang, Q. et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J. Am. Chem. Soc. 140, 1715–1724 (2018).

Article 

Google Scholar
 

Wang, L. et al. Benzobisthiadiazole-based small molecular near-infrared-II fluorophores: from molecular engineering to nanophototheranostics. ACS Nano 18, 4683–4703 (2024).

Article 

Google Scholar
 

Wang, S. et al. Photostable small-molecule NIR-II fluorescent scaffolds that cross the blood–brain barrier for noninvasive brain imaging. J. Am. Chem. Soc. 144, 23668–23676 (2022).

Article 

Google Scholar
 

Hu, X. et al. Crucial breakthrough of BODIPY-based NIR-II fluorescent emitters for advanced biomedical theranostics. Adv. Funct. Mater. 34, 2401325 (2024).

Article 

Google Scholar
 

Wei, R. et al. Rigid and photostable shortwave infrared dye absorbing/emitting beyond 1200 nm for high-contrast multiplexed imaging. J. Am. Chem. Soc. 145, 12013–12022 (2023).

Article 

Google Scholar
 

Meador, W. E. et al. Silicon-RosIndolizine fluorophores with shortwave infrared absorption and emission profiles enable in vivo fluorescence imaging. Nat. Chem. 16, 970–978 (2024).

Article 

Google Scholar
 

Liu, D. et al. Xanthene-based NIR-II dyes for in vivo dynamic imaging of blood circulation. J. Am. Chem. Soc. 143, 17136–17143 (2021).

Article 

Google Scholar
 

Ren, T.-B. et al. A general strategy for development of activatable NIR-II fluorescent probes for in vivo high-contrast bioimaging. Angew. Chem. Int. Ed. Engl. 60, 800–805 (2021).

Article 

Google Scholar
 

Yan, K. et al. Ultra-photostable small-molecule dyes facilitate near-infrared biophotonics. Nat. Commun. 15, 2593 (2024).

Article 

Google Scholar
 

Zhang, M. et al. Bright quantum dots emitting at ~1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc. Natl Acad. Sci. USA 115, 6590–6595 (2018).

Article 

Google Scholar
 

Zhong, Y. & Dai, H. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems. Nano Res. 13, 1281–1294 (2020).

Article 

Google Scholar
 

Chen, Y. et al. Shortwave infrared in vivo imaging with gold nanoclusters. Nano Lett. 17, 6330–6334 (2017).

Article 

Google Scholar
 

Liu, H. et al. Atomic-precision gold clusters for NIR-II imaging. Adv. Mater. 31, 1901015 (2019).

Article 

Google Scholar
 

Song, X. et al. A new class of NIR-II gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging. Angew. Chem. Int. Ed. Engl. 60, 1306–1312 (2021).

Article 

Google Scholar
 

Ma, Z. et al. Cross-link-functionalized nanoparticles for rapid excretion in nanotheranostic applications. Angew. Chem. 132, 20733–20741 (2020).

Article 

Google Scholar
 

Ren, F. et al. Shortwave-infrared-light-emitting probes for the in vivo tracking of cancer vaccines and the elicited immune responses. Nat. Biomed. Eng. 8, 726–739 (2023).

Article 

Google Scholar
 

Wang, F. et al. Light-sheet microscopy in the near-infrared II window. Nat. Methods 16, 545–552 (2019).

Article 

Google Scholar
 

Zhu, S., Tian, R., Antaris, A. L., Chen, X. & Dai, H. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater. 31, 1900321 (2019).

Article 

Google Scholar
 

Jiang, Y. et al. A SARS-CoV-2 vaccine on an NIR-II/SWIR emitting nanoparticle platform. Sci. Adv. 11, eadp5539 (2025).

Article 

Google Scholar
 

Ma, Z. et al. Near-Infrared IIb fluorescence imaging of vascular regeneration with dynamic tissue perfusion measurement and high spatial resolution. Adv. Funct. Mater. 28, 1803417 (2018).

Article 

Google Scholar
 

Wang, F. et al. In vivo NIR-II structured-illumination light-sheet microscopy. Proc. Natl Acad. Sci. USA 118, e2023888118 (2021).

Article 

Google Scholar
 

Shulman, Z. et al. T follicular helper cell dynamics in germinal centers. Science 341, 673–677 (2013).

Article 

Google Scholar
 

Wahl, R. L., Dilsizian, V. & Palestro, C. J. At Last, 18F-FDG for inflammation and infection! J. Nucl. Med. 62, 1048–1049 (2021).

Article 

Google Scholar
 

Brandes, R., Lang, F. & Schmidt, R. F. Physiologie des Menschen: mit Pathophysiologie (Springer-Verlag, 2011).

Chaplin, D. D. Overview of the immune response. J. Allergy Clin. Immunol. 125, S3–S23 (2010).

Article 

Google Scholar
 

McDermott, A. M. Antimicrobial compounds in tears. Exp. Eye Res. 117, 53–61 (2013).

Article 

Google Scholar
 

Smith, J. L. The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions. J. Food Prot. 66, 1292–1303 (2003).

Article 

Google Scholar
 

Mihlan, M., Safaiyan, S., Stecher, M., Paterson, N. & Lämmermann, T. Surprises from intravital imaging of the innate immune response. Annu. Rev. Cell Dev. Biol. 38, 467–489 (2022).

Article 

Google Scholar
 

Gordon, S. Phagocytosis: an immunobiologic process. Immunity 44, 463–475 (2016).

Article 

Google Scholar
 

Wong, C. H. Y., Jenne, C. N., Petri, B., Chrobok, N. L. & Kubes, P. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat. Immunol. 14, 785–792 (2013).

Article 

Google Scholar
 

Lee, W.-Y. et al. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat. Immunol. 11, 295–302 (2010).

Article 

Google Scholar
 

Neupane, A. S. & Kubes, P. Imaging reveals novel innate immune responses in lung, liver, and beyond. Immunol. Rev. 306, 244–257 (2022).

Article 

Google Scholar
 

Neupane, A. S. et al. Patrolling alveolar macrophages conceal bacteria from the immune system to maintain homeostasis. Cell 183, 110–125.e11 (2020).

Article 

Google Scholar
 

Park, S. et al. Skin-resident immune cells actively coordinate their distribution with epidermal cells during homeostasis. Nat. Cell Biol. 23, 476–484 (2021).

Article 

Google Scholar
 

Liarski, V. M. et al. Quantifying in situ adaptive immune cell cognate interactions in humans. Nat. Immunol. 20, 503–513 (2019).

Article 

Google Scholar
 

Cyster, J. G. & Allen, C. D. C. B cell responses: cell interaction dynamics and decisions. Cell 177, 524–540 (2019).

Article 

Google Scholar
 

Nakandakari-Higa, S. et al. Universal recording of immune cell interactions in vivo. Nature 627, 399–406 (2024).

Article 

Google Scholar
 

Cohen, M. et al. The interaction of CD4+ helper T cells with dendritic cells shapes the tumor microenvironment and immune checkpoint blockade response. Nat. Cancer 3, 303–317 (2022).

Article 

Google Scholar
 

Chatzileontiadou, D. S. M., Sloane, H., Nguyen, A. T., Gras, S. & Grant, E. J. The many faces of CD4+ T Cells: immunological and structural characteristics. Int. J. Mol. Sci. 22, 73 (2020).

Article 

Google Scholar
 

Hay, Z. L. Z. & Slansky, J. E. Granzymes: the molecular executors of immune-mediated cytotoxicity. Int. J. Mol. Sci. 23, 1833 (2022).

Article 

Google Scholar
 

Volpe, E., Sambucci, M., Battistini, L. & Borsellino, G. Fas–Fas ligand: checkpoint of T cell functions in multiple sclerosis. Front. Immunol. 7, 382 (2016).

Article 

Google Scholar
 

Kaech, S. M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat. Immunol. 2, 415–422 (2001).

Article 

Google Scholar
 

Cui, C. et al. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell 184, 6101–6118.e13 (2021).

Article 

Google Scholar
 

Pantaleo, G., Correia, B., Fenwick, C., Joo, V. S. & Perez, L. Antibodies to combat viral infections: development strategies and progress. Nat. Rev. Drug Discov. 21, 676–696 (2022).

Article 

Google Scholar
 

Lanzavecchia, A. & Sallusto, F. Progressive differentiation and selection of the fittest in the immune response. Nat. Rev. Immunol. 2, 982–987 (2002).

Article 

Google Scholar
 

Tabatabaei, M. S. & Ahmed, M. Enzyme-linked immunosorbent assay (ELISA). Methods Mol. Biol. 2508, 115–134 (2022).

Article 

Google Scholar
 

Kouwenhoven, M. et al. Enzyme-linked immunospot assays provide a sensitive tool for detection of cytokine secretion by monocytes. Clin. Diagn. Lab. Immunol. 8, 1248–1257 (2001).

Article 

Google Scholar
 

Perfetto, S. P., Chattopadhyay, P. K. & Roederer, M. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 4, 648–655 (2004).

Article 

Google Scholar
 

Mocellin, S. et al. Use of quantitative real-time PCR to determine immune cell density and cytokine gene profile in the tumor microenvironment. J. Immunol. Methods 280, 1–11 (2003).

Article 

Google Scholar
 

Al-Lamki, R. S., Bradley, J. R. & Pober, J. S. Human organ culture: updating the approach to bridge the gap from in vitro to in vivo in inflammation, cancer, and stem cell biology. Front. Med. 4, 148 (2017).

Article 

Google Scholar
 

Kanie, K. et al. Modeling of T cell-mediated autoimmune pituitary disease using human induced pluripotent stem cell-originated organoid. Nat. Commun. 16, 7900 (2025).

Article 

Google Scholar
 

Poole, J. J. A. & Mostaço-Guidolin, L. B. Optical microscopy and the extracellular matrix structure: a review. Cells 10, 1760 (2021).

Article 

Google Scholar
 

Balasubramanian, H., Hobson, C. M., Chew, T.-L. & Aaron, J. S. Imagining the future of optical microscopy: everything, everywhere, all at once. Commun. Biol. 6, 1–12 (2023).

Article 

Google Scholar
 

Jonkman, J., Brown, C. M., Wright, G. D., Anderson, K. I. & North, A. J. Tutorial: guidance for quantitative confocal microscopy. Nat. Protoc. 15, 1585–1611 (2020).

Article 

Google Scholar
 

Gu, Y. et al. Immune microniches shape intestinal Treg function. Nature 628, 854–862 (2024).

Article 

Google Scholar
 

Eisenstein, S. et al. Myeloid derived suppressor cells as a vehicle for tumor-specific oncolytic viral therapy. Cancer Res. 73, 5003–5015 (2013).

Article 

Google Scholar
 

Weist, M. R. et al. PET of adoptively transferred chimeric antigen receptor T cells with 89Zr-oxine. J. Nucl. Med. 59, 1531–1537 (2018).

Article 

Google Scholar
 

Liu, J. et al. Ultrasound molecular imaging of acute cardiac transplantation rejection using nanobubbles targeted to T lymphocytes. Biomaterials 162, 200–207 (2018).

Article 

Google Scholar
 

Lee, H. et al. Optimization of dendritic cell-mediated cytotoxic T-cell activation by tracking of dendritic cell migration using reporter gene imaging. Mol. Imaging Biol. 20, 398–406 (2018).

Article 

Google Scholar
 

Marangoni, F. et al. Expansion of tumor-associated Treg cells upon disruption of a CTLA-4-dependent feedback loop. Cell 184, 3998–4015.e19 (2021).

Article 

Google Scholar
 

Reinders, F. C. J. et al. Magnetic resonance guided elective neck irradiation targeting individual lymph nodes: a new concept. Phys. Imaging Radiat. Oncol. 20, 76–81 (2021).

Article 

Google Scholar
 

Pai, A., Shetty, R., Hodis, B. & Chowdhury, Y. S. in StatPearls (StatPearls Publishing, 2024).

Mukhatov, A., Le, T.-A., Pham, T. T. & Do, T. D. A comprehensive review on magnetic imaging techniques for biomedical applications. Nano Sel. 4, 213–230 (2023).

Article 

Google Scholar
 

Takahashi, M., Uematsu, H. & Hatabu, H. MR imaging at high magnetic fields. Eur. J. Radiol. 46, 45–52 (2003).

Article 

Google Scholar
 

Ladd, M. E. et al. Pros and cons of ultra-high-field MRI/MRS for human application. Prog. Nucl. Magn. Reson. Spectrosc. 109, 1–50 (2018).

Article 

Google Scholar
 

Ahrens, E. T. & Bulte, J. W. M. Tracking immune cells in vivo using magnetic resonance imaging. Nat. Rev. Immunol. 13, 755–763 (2013).

Article 

Google Scholar
 

Mohanty, S. et al. Nanoparticle enhanced MRI can monitor macrophage response to CD47 mAb immunotherapy in osteosarcoma. Cell Death Dis. 10, 1–14 (2019).

Article 

Google Scholar
 

Ahrens, E. T., Feili-Hariri, M., Xu, H., Genove, G. & Morel, P. A. Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn. Reson. Med. 49, 1006–1013 (2003).

Article 

Google Scholar
 

Luchetti, A. et al. Monoclonal antibodies conjugated with superparamagnetic iron oxide particles allow magnetic resonance imaging detection of lymphocytes in the mouse brain. Mol. Imaging 11, 114–125 (2012).

Article 

Google Scholar
 

Kadayakkara, D. K., Ranganathan, S., Young, W.-B. & Ahrens, E. T. Assaying macrophage activity in a murine model of inflammatory bowel disease using fluorine-19 MRI. Lab Invest. 92, 636–645 (2012).

Article 

Google Scholar
 

Le Bihan, D. et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161, 401–407 (1986).

Article 

Google Scholar
 

Bihan, D. L. et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168, 566 (1988).

Article 

Google Scholar
 

Alauddin, M. M. Positron emission tomography (PET) imaging with 18F-based radiotracers. Am. J. Nucl. Med. Mol. Imaging 2, 55–76 (2011).


Google Scholar
 

Markovic, S. N. et al. Non-invasive visualization of tumor infiltrating lymphocytes in patients with metastatic melanoma undergoing immune checkpoint inhibitor therapy: a pilot study. Oncotarget 9, 30268–30278 (2018).

Article 

Google Scholar
 

Moses, W. W. Fundamental limits of spatial resolution in PET. Nucl. Instrum. Methods Phys. Res. A 648, S236–S240 (2011).

Article 

Google Scholar
 

Krebs, S. et al. Antibody with infinite affinity for in vivo tracking of genetically engineered lymphocytes. J. Nucl. Med. 59, 1894–1900 (2018).

Article 

Google Scholar
 

Minn, I. et al. Imaging CAR T cell therapy with PSMA-targeted positron emission tomography. Sci. Adv. 5, eaaw5096 (2019).

Article 

Google Scholar
 

Salehi Farid, A. et al. CD45-PET is a robust, non-invasive tool for imaging inflammation. Nature 639, 214–224 (2025).

Article 

Google Scholar
 

Kist de Ruijter, L. et al. Whole-body CD8+ T cell visualization before and during cancer immunotherapy: a phase 1/2 trial. Nat. Med. 28, 2601–2610 (2022).

Article 

Google Scholar
 

Zhou, M. et al. [68Ga]Ga-AUNP-12 PET imaging to assess the PD-L1 status in preclinical and first-in-human study. Eur. J. Nucl. Med. Mol. Imaging 51, 369–379 (2024).

Article 

Google Scholar
 

Zhou, M. et al. ImmunoPET imaging of LAG-3 expression in tumor microenvironment with 68Ga-labelled cyclic peptides tracers: from bench to bedside. J. Immunother. Cancer 12, e009153 (2024).

Article 

Google Scholar
 

Wang, X. et al. Preclinical and exploratory human studies of novel 68Ga-labeled D-peptide antagonist for PET imaging of TIGIT expression in cancers. Eur. J. Nucl. Med. Mol. Imaging 49, 2584–2594 (2022).

Article 

Google Scholar
 

Wilson, K. E., Wang, T. Y. & Willmann, J. K. Acoustic and photoacoustic molecular imaging of cancer. J. Nucl. Med. 54, 1851–1854 (2013).

Article 

Google Scholar
 

Levy, J. et al. High-frequency ultrasound in clinical dermatology: a review. Ultrasound J. 13, 24 (2021).

Article 

Google Scholar
 

Fiori, G. et al. A comparative study on depth of penetration measurements in diagnostic ultrasounds through the adaptive SNR threshold method. IEEE Trans. Instrum. Meas. 72, 1–8 (2023).

Article 

Google Scholar
 

Zhou, S., Park, G., Lin, M., Yang, X. & Xu, S. Wearable ultrasound technology. Nat. Rev. Bioeng. 3, 835–854 (2025).

Article 

Google Scholar
 

Sumaiya, K. & Kawathekar, S. S. Drawbacks of poor-quality ultrasound images and its enhancement. Int. J. Computer Appl. 175, 47–55 (2020).


Google Scholar
 

Fournier, L., Taille, T. & Chauvierre, C. Microbubbles for human diagnosis and therapy. Biomaterials 294, 122025 (2023).

Article 

Google Scholar
 

Weber, J., Beard, P. C. & Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 13, 639–650 (2016).

Article 

Google Scholar
 

Lee, H. W. et al. Dual reporter gene imaging for tracking macrophage migration using the human sodium iodide symporter and an enhanced firefly luciferase in a murine inflammation model. Mol. Imaging Biol. 15, 703–712 (2013).

Article 

Google Scholar
 

He, S., Li, J., Lyu, Y., Huang, J. & Pu, K. Near-Infrared fluorescent macromolecular reporters for real-time imaging and urinalysis of cancer immunotherapy. J. Am. Chem. Soc. 142, 7075–7082 (2020).

Article 

Google Scholar
 

He, S., Cheng, P. & Pu, K. Activatable near-infrared probes for the detection of specific populations of tumour-infiltrating leukocytes in vivo and in urine. Nat. Biomed. Eng. 7, 281–297 (2023).

Article 

Google Scholar
 

Hu, Y., Yu, J., Xu, M. & Pu, K. Bienzyme-locked activatable fluorescent probes for specific imaging of tumor-associated mast cells. J. Am. Chem. Soc. 146, 12656–12663 (2024).

Article 

Google Scholar
 

Mrass, P. et al. Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J. Exp. Med. 203, 2749 (2006).

Article 

Google Scholar
 

Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37–R61 (2013).

Article 

Google Scholar
 

Wang, X. et al. Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography. J. Biomed. Opt. 11, 041106 (2006).

Article 

Google Scholar
 

Diao, S. et al. Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew. Chem. Int. Ed. 54, 14758–14762 (2015).

Article 

Google Scholar
 

Arús, B. A. et al. Shortwave infrared fluorescence imaging of peripheral organs in awake and freely moving mice. Front. Neurosci. 17, 1135494 (2023).

Article 

Google Scholar
 

Wang, X. et al. An emerging toolkit of Ho3+ sensitized lanthanide nanocrystals with NIR-II excitation and emission for in vivo bioimaging. J. Am. Chem. Soc. 147, 2182–2192 (2025).

Article 

Google Scholar
 

Dodt, H.-U. et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4, 331–336 (2007).

Article 

Google Scholar
 

Liu, P. et al. Airy beam assisted NIR-II light-sheet microscopy. Nano Today 47, 101628 (2022).

Article 

Google Scholar
 

Xia, F. et al. Short-wave infrared confocal fluorescence imaging of deep mouse brain with a superconducting nanowire single-photon detector. ACS Photon. 8, 2800–2810 (2021).

Article 

Google Scholar
 

Pinkard, H. et al. Learned adaptive multiphoton illumination microscopy for large-scale immune response imaging. Nat. Commun. 12, 1916 (2021).

Article 

Google Scholar
 

Gu, M., Gan, X., Kisteman, A. & Xu, M. G. Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media. Appl. Phys. Lett. 77, 1551–1553 (2000).

Article 

Google Scholar
 

Tong, S. et al. In vivo deep-brain 3- and 4-photon fluorescence imaging of subcortical structures labeled by quantum dots excited at the 2200 nm window. ACS Nano 17, 3686–3695 (2023).

Article 

Google Scholar
 

Bueno, J. M., Ávila, F. J. & Artal, P. Comparing the performance of a femto fiber-based laser and a Ti:sapphire used for multiphoton microscopy applications. Appl. Opt. 58, 3830–3835 (2019).

Article 

Google Scholar
 

Song, S. et al. Molecular engineering of AIE luminogens for NIR-II/IIb bioimaging and surgical navigation of lymph nodes. Matter 5, 2847–2863 (2022).

Article 

Google Scholar
 

Choe, K. et al. Intravital three-photon microscopy allows visualization over the entire depth of mouse lymph nodes. Nat. Immunol. 23, 330–340 (2022).

Article 

Google Scholar
 

Zhong, Y. et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 37, 1322–1331 (2019).

Article 

Google Scholar
 

Hor, J. L. et al. Spatiotemporally distinct interactions with dendritic cell subsets facilitates CD4+ and CD8+ T cell activation to localized viral infection. Immunity 43, 554–565 (2015).

Mi, C. et al. Bone disease imaging through the near-infrared-II window. Nat. Commun. 14, 6287 (2023).

Article 

Google Scholar
 

Song, Y. et al. Advancements in noninvasive techniques for transplant rejection: from biomarker detection to molecular imaging. J. Transl. Med. 23, 147 (2025).

Article 

Google Scholar
 

Hu, Z. et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng. 4, 259–271 (2020).

Article 

Google Scholar
 

Ma, Z., Wang, F., Wang, W., Zhong, Y. & Dai, H. Deep learning for in vivo near-infrared imaging. Proc. Natl Acad. Sci. USA 118, e2021446118 (2021).

Article 

Google Scholar
 

Zidane, M. et al. A review on deep learning applications in highly multiplexed tissue imaging data analysis. Front. Bioinform. 3, 1159381 (2023).

Article 

Google Scholar
 

Ou, Z. et al. Achieving optical transparency in live animals with absorbing molecules. Science 385, 6713 (2024).

Article 

Google Scholar
 

Kim, I. et al. Real-time, in situ imaging of macrophages via phase-change peptide nanoemulsions. Small 19, 2301673 (2023).

Article 

Google Scholar
 

Jiang, Y., Hou, X., Zhao, X., Jing, J. & Sun, L. Tracking adoptive natural killer cells via ultrasound imaging assisted with nanobubbles. Acta Biomater. 169, 542–555 (2023).

Article 

Google Scholar
 

Bourdeau, R. W. et al. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature 553, 86–90 (2018).

Article 

Google Scholar
 

Xu, Y. et al. Superparamagnetic MRI probes for in vivo tracking of dendritic cell migration with a clinical 3 T scanner. Biomaterials 58, 63–71 (2015).

Article 

Google Scholar
 

Mayer, K. E. et al. T-cell functionality testing is highly relevant to developing novel immuno-tracers monitoring T cells in the context of immunotherapies and revealed CD7 as an attractive target. Theranostics 8, 6070–6087 (2018).

Article 

Google Scholar
 

Yoon, J. T., Longtine, M. S., Marquez-Nostra, B. V. & Wahl, R. L. Evaluation of next-generation anti-CD20 antibodies labeled with 89Zr in human lymphoma xenografts. J. Nucl. Med. 59, 1219–1224 (2018).

Article 

Google Scholar
 

Pandit-Taskar, N. et al. First-in-humans imaging with 89Zr-Df-IAB22M2C anti-CD8 minibody in patients with solid malignancies: preliminary pharmacokinetics, biodistribution, and lesion targeting. J. Nucl. Med. 61, 512–519 (2020).

Article 

Google Scholar
 

Emami-Shahri, N. et al. Clinically compliant spatial and temporal imaging of chimeric antigen receptor T-cells. Nat. Commun. 9, 1081 (2018).

Article 

Google Scholar
 

Garcia, J. et al. Naturally occurring T cell mutations enhance engineered T cell therapies. Nature 626, 626–634 (2024).

Article 

Google Scholar
 

Antaris, A. L. et al. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat. Commun. 8, 15269 (2017).

Article 

Google Scholar
 

Deng, G. et al. Near-infrared fluorescence imaging in the largely unexplored window of 900–1,000 nm. Theranostics 8, 4116–4128 (2018).

Article 

Google Scholar
 

Mendes, L. S. T., Du, M.-Q., Matutes, E. & Wotherspoon, A. Splenic marginal zone lymphoma: a review of the clinical presentation, pathology, molecular biology, and management. Blood Lymph. Cancer Target Ther. 4, 29–38 (2014).


Google Scholar
 

Leitgeb, R. A. & Baumann, B. Multimodal optical medical imaging concepts based on optical coherence tomography. Front. Phys. 6, 114 (2018).

Article 

Google Scholar
 

Walter, A. et al. Correlated multimodal imaging in life sciences: expanding the biomedical horizon. Front. Phys. 8, 47 (2020).

Pogue, B. W., Leblond, F., Krishnaswamy, V. & Paulsen, K. D. Radiologic and near-infrared/optical spectroscopic imaging: where is the synergy? Am. J. Roentgenol. 195, 321–332 (2010).

Article 

Google Scholar
 

Yao, J. & Wang, L. V. Sensitivity of photoacoustic microscopy. Photoacoustics 2, 87–101 (2014).

Article 

Google Scholar
 

Huysmans, H. et al. Expression kinetics and innate immune response after electroporation and LNP-mediated delivery of a self-amplifying mRNA in the skin. Mol. Ther. Nucleic Acids 17, 867–878 (2019).

Article 

Google Scholar
 

Zhang, F. et al. Preclinical lymphatic imaging. Mol. Imaging Biol. 13, 599–612 (2011).

Article 

Google Scholar
 

Ying, M. & Ahuja, A. T. Ultrasound of neck lymph nodes: how to do it and how do they look? Radiography 12, 105–117 (2006).

Article 

Google Scholar
 

Goldinger, S. M. et al. Nano-particle vaccination combined with TLR-7 and -9 ligands triggers memory and effector CD8+ T-cell responses in melanoma patients. Eur. J. Immunol. 42, 3049–3061 (2012).

Article 

Google Scholar
 

Hong, G. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photon. 8, 723–730 (2014).

Article 

Google Scholar
 

Zhou, B., Tao, L., Tsang, Y. H., Jin, W. & Pun, E. Y.-B. Superbroadband near-infrared emission and energy transfer in Pr3+–Er3+ codoped fluorotellurite glasses. Opt. Express 20, 12205–12211 (2012).

Article 

Google Scholar
 

Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018).

Article 

Google Scholar
 

Hong, G. et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat. Commun. 5, 4206 (2014).

Article 

Google Scholar
 

Kaur, R., Kruse, N. A., Smith, C., Hammer, N. I. & Delcamp, J. H. Comparison of vinyldimethylaniline and indolizine donor groups on Si-substituted xanthene core shortwave infrared fluorophores. ChemPhotoChem 8, e202400023 (2024).

Article 

Google Scholar
 

Loganathan, S. et al. Ultrashort pulsed laser-assisted direct restoration of human enamel using 3D printable biocomposite. Adv. Mater. Technol. 10, 2401362 (2025).

Article 

Google Scholar
 

Ganem, J. & Bowman, S. R. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources. Nanoscale Res. Lett. 8, 455 (2013).

Article 

Google Scholar
 

Dai, H. et al. Small molecular NIR-II fluorophores for cancer phototheranostics. Innovation 2, 100082 (2021).


Google Scholar
 

Yeroslavsky, G. et al. Photostabilization of indocyanine green dye by energy transfer in phospholipid-PEG micelles. J. Photopolym. Sci. Technol. 32, 115–121 (2019).

Article 

Google Scholar
 

Mar’ina, U. A., Vorob’ev, V. A. & Mar’in, A. P. CaSnO3: Yb3+, Er3+, Ho3+ system synthesis and study of its luminescence under IR excitation. Mod. Electron. Mater. 4, 71–75 (2018).

Article 

Google Scholar