Margulies, D. H., Natarajan, K., Rossjohn, J. & McCluskey, J. in Paul’s Fundamental Immunology (eds. Flajnik, M. F., Singh, N. J. & Holland, S. M.) (Wolters Kluwer, 2023).

Blum, J. S., Wearsch, P. A. & Cresswell, P. Pathways of antigen processing. Annu. Rev. Immunol. 31, 443–473 (2013).


Google Scholar
 

Bottino, C., Picant, V., Vivier, E. & Castriconi, R. Natural killer cells and engagers: powerful weapons against cancer. Immunol. Rev. 328, 412–421 (2024).


Google Scholar
 

Brown, D., Trowsdale, J. & Allen, R. The LILR family: modulators of innate and adaptive immune pathways in health and disease. Tissue Antigens 64, 215–225 (2004).


Google Scholar
 

Malnati, M. S. et al. Peptide specificity in the recognition of MHC class I by natural killer cell clones. Science 267, 1016–1018 (1995).


Google Scholar
 

Sim, M. J. W. et al. Innate receptors with high specificity for HLA class I-peptide complexes. Sci. Immunol. 8, eadh1781 (2023).


Google Scholar
 

Chapman, T. L., Heikeman, A. P. & Bjorkman, P. J. The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity 11, 603–613 (1999).


Google Scholar
 

Shiroishi, M. et al. Structural basis for recognition of the nonclassical MHC molecule HLA-G by the leukocyte Ig-like receptor B2 (LILRB2/LIR2/ILT4/CD85d). Proc. Natl. Acad. Sci. USA 103, 16412–16417 (2006).


Google Scholar
 

Marrack, P., Scott-Browne, J. P., Dai, S., Gapin, L. & Kappler, J. W. Evolutionarily conserved amino acids that control TCR-MHC interaction. Annu. Rev. Immunol. 26, 171–203 (2008).


Google Scholar
 

Rossjohn, J. et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 33, 169–200 (2015).


Google Scholar
 

Panda, A. K. et al. Cutting edge: inhibition of the interaction of NK inhibitory receptors with MHC class I augments antiviral and antitumor immunity. J. Immunol. 205, 567–572 (2020).


Google Scholar
 

Kohrt, H. E. et al. Anti-KIR antibody enhancement of anti-lymphoma activity of natural killer cells as monotherapy and in combination with anti-CD20 antibodies. Blood 123, 678–686 (2014).


Google Scholar
 

Panda, A. K. et al. Antibody-mediated inhibition of HLA/LILR interactions breaks innate immune tolerance and induces antitumor immunity. Cancer Immunol. Res. 13, 1938–1955 (2025).


Google Scholar
 

Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).


Google Scholar
 

Paul, S. & Lal, G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front. Immunol. 8, 1124 (2017).


Google Scholar
 

Abel, A. M., Yang, C., Thakar, M. S. & Malarkannan, S. Natural killer cells: development, maturation, and clinical utilization. Front. Immunol. 9, 1869 (2018).


Google Scholar
 

Boyington, J. C. & Sun, P. D. A structural perspective on MHC class I recognition by killer cell immunoglobulin-like receptors. Mol. Immunol. 38, 1007–1021 (2002).


Google Scholar
 

Natarajan, K., Dimasi, N., Wang, J., Mariuzza, R. & Margulies, D. Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annu. Rev. Immunol. 20, 853–885 (2002).


Google Scholar
 

Kärre, K. On the immunobiology of natural killer cells: studies of murine NK-cells and their interactions with T-cells and T-lymphomas, Diss., Stockholm (1981).

Karlhofer, F. M., Ribaudo, R. K. & Yokoyama, W. M. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 358, 66–70 (1992).


Google Scholar
 

Tormo, J., Natarajan, K., Margulies, D. & Mariuzza, R. Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Nature 402, 623–631 (1999).


Google Scholar
 

Li, Y. & Mariuzza, R. A. Structural basis for recognition of cellular and viral ligands by NK cell receptors. Front. Immunol. 5, 123 (2014).


Google Scholar
 

Myers, J. A. & Miller, J. S. Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 85–100 (2021).


Google Scholar
 

Maiorino, L., Dassler-Plenker, J., Sun, L. & Egeblad, M. Innate immunity and cancer pathophysiology. Annu. Rev. Pathol. 17, 425–457 (2022).


Google Scholar
 

Kyrysyuk, O. & Wucherpfennig, K. W. Designing cancer immunotherapies that engage T cells and NK cells. Annu. Rev. Immunol. 41, 17–38 (2023).


Google Scholar
 

Fenis, A., Demaria, O., Gauthier, L., Vivier, E. & Narni-Mancinelli, E. New immune cell engagers for cancer immunotherapy. Nat. Rev. Immunol. 24, 471–486 (2024).


Google Scholar
 

Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).


Google Scholar
 

Lee, H. T. et al. Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab. Sci. Rep. 7, 5532 (2017).


Google Scholar
 

Panda, A. K. et al. Antibody mediated inhibition of HLA/LILR interactions breaks innate immune tolerance and induces antitumor immunity. Cancer Immunol. Res. 13, 1938–1955 (2025).

Pymm, P. et al. The structural basis for recognition of human leukocyte antigen class I molecules by the pan-HLA antibody W6/32. J. Immunol. 213, 876–885 (2024).


Google Scholar
 

Rebai, N. & Malissen, B. Structural and genetic analyses of HLA class I molecules using monoclonal xenoantibodies. Tissue Antigens 22, 107–117 (1983).


Google Scholar
 

Apps, R. et al. Human leucocyte antigen (HLA) expression of primary trophoblast cells and placental cell lines, determined using single antigen beads to characterize allotype specificities of anti-HLA antibodies. Immunology 127, 26–39 (2009).


Google Scholar
 

Stewart, C. A. et al. Recognition of peptide-MHC class I complexes by activating killer immunoglobulin-like receptors. Proc. Natl. Acad. Sci. USA 102, 13224–13229 (2005).


Google Scholar
 

van der Ploeg, K. et al. Modulation of human leukocyte antigen-C by human cytomegalovirus stimulates KIR2DS1 recognition by natural killer cells. Front. Immunol. 8, 298 (2017).


Google Scholar
 

Henderson, R. & Hasnain, S. ‘Cryo-EM’: electron cryomicroscopy, cryo electron microscopy or something else? IUCrJ 10, 519–520 (2023).


Google Scholar
 

Wu, M. & Lander, G. C. How low can we go? Structure determination of small biological complexes using single-particle cryo-EM. Curr. Opin. Struct. Biol. 64, 9–16 (2020).


Google Scholar
 

Yip, K. M., Fischer, N., Paknia, E., Chari, A. & Stark, H. Atomic-resolution protein structure determination by cryo-EM. Nature 587, 157–161 (2020).


Google Scholar
 

Han, Y. et al. High-yield monolayer graphene grids for near-atomic resolution cryoelectron microscopy. Proc. Natl. Acad. Sci. USA 117, 1009–1014 (2020).


Google Scholar
 

Wright, K. M. et al. Hydrophobic interactions dominate the recognition of a KRAS G12V neoantigen. Nat. Commun. 14, 5063 (2023).


Google Scholar
 

Vivian, J. P. et al. Killer cell immunoglobulin-like receptor 3DL1-mediated recognition of human leukocyte antigen B. Nature 479, 401–405 (2011).


Google Scholar
 

Boyington, J. C., Motyka, S. A., Schuck, P., Brooks, A. G. & Sun, P. D. Crystal structure of an NK cell immunoglobulin-like receptor in complex with its class I MHC ligand. Nature 405, 537–543 (2000).


Google Scholar
 

Hilton, H. G. & Parham, P. Missing or altered self: human NK cell receptors that recognize HLA-C. Immunogenetics 69, 567–579 (2017).


Google Scholar
 

Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).


Google Scholar
 

Jiang, J. et al. SARS-CoV-2 antibodies recognize 23 distinct epitopic sites on the receptor binding domain. Commun. Biol. 6, 953 (2023).


Google Scholar
 

Orr, C. M. et al. Hinge disulfides in human IgG2 CD40 antibodies modulate receptor signaling by regulation of conformation and flexibility. Sci. Immunol. 7, eabm3723 (2022).


Google Scholar
 

Elliott, I. G. et al. Structure-guided disulfide engineering restricts antibody conformation to elicit TNFR agonism. Nat. Commun. 16, 3495 (2025).


Google Scholar
 

Joyce, M. G. & Sun, P. D. The structural basis of ligand recognition by natural killer cell receptors. J. Biomed. Biotechnol. 2011, 203628 (2011).


Google Scholar
 

Lorig-Roach, N., Harpell, N. M. & DuBois, R. M. Structural basis for the activity and specificity of the immune checkpoint inhibitor lirilumab. Sci. Rep. 14, 742 (2024).


Google Scholar
 

Tian, J. et al. ILT2 and ILT4 drive myeloid suppression via both overlapping and distinct mechanisms. Cancer Immunol. Res. 12, 592–613 (2024).


Google Scholar
 

Andre, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175, 1731–1743.e13 (2018).


Google Scholar
 

van Montfoort, N. et al. NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines. Cell 175, 1744–1755.e15 (2018).


Google Scholar
 

Mandel, I. et al. BND-22, a first-in-class humanized ILT2-blocking antibody, promotes antitumor immunity and tumor regression. J. Immunother. Cancer 10, e004859 (2022).

Villa-Alvarez, M. et al. Ig-like transcript 2 (ILT2) blockade and lenalidomide restore NK cell function in chronic lymphocytic leukemia. Front. Immunol. 9, 2917 (2018).


Google Scholar
 

He, K. et al. Homeostatic self-MHC-I recognition regulates anti-metastatic function of mature lung natural killer cells. Biochem. Biophys. Res. Commun. 738, 150906 (2024).


Google Scholar
 

Harris, L. J. et al. The three-dimensional structure of an intact monoclonal antibody for canine lymphoma. Nature 360, 369–372 (1992).


Google Scholar
 

Harris, L. J., Larson, S. B., Hasel, K. W. & McPherson, A. Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 36, 1581–1597 (1997).


Google Scholar
 

Saphire, E. O., Parren, P. W., Barbas, C. F. 3rd, Burton, D. R. & Wilson, I. A. Crystallization and preliminary structure determination of an intact human immunoglobulin, b12: an antibody that broadly neutralizes primary isolates of HIV-1. Acta Crystallogr. D. Biol. Crystallogr. 57, 168–171 (2001).


Google Scholar
 

Scapin, G. et al. Structure of full-length human anti-PD1 therapeutic IgG4 antibody pembrolizumab. Nat. Struct. Mol. Biol. 22, 953–958 (2015).


Google Scholar
 

Blech, M. et al. Structure of a therapeutic full-length anti-NPRA IgG4 antibody: dissecting conformational diversity. Biophys. J. 116, 1637–1649 (2019).


Google Scholar
 

Silverton, E. W., Navia, M. A. & Davies, D. R. Three-dimensional structure of an intact human immunoglobulin. Proc. Natl. Acad. Sci. USA 74, 5140–5144 (1977).


Google Scholar
 

Guddat, L. W., Herron, J. N. & Edmundson, A. B. Three-dimensional structure of a human immunoglobulin with a hinge deletion. Proc. Natl. Acad. Sci. USA 90, 4271–4275 (1993).


Google Scholar
 

Li, Y. et al. Structural insights into immunoglobulin M. Science 367, 1014–1017 (2020).


Google Scholar
 

Chen, Q., Menon, R. P., Masino, L., Tolar, P. & Rosenthal, P. B. Structural basis for Fc receptor recognition of immunoglobulin M. Nat. Struct. Mol. Biol. 30, 1033–1039 (2023).


Google Scholar
 

Chen, Q., Menon, R., Calder, L. J., Tolar, P. & Rosenthal, P. B. Cryomicroscopy reveals the structural basis for a flexible hinge motion in the immunoglobulin M pentamer. Nat. Commun. 13, 6314 (2022).


Google Scholar
 

Brunger, A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).


Google Scholar
 

Pintilie, G. et al. Measurement of atom resolvability in cryo-EM maps with Q-scores. Nat. Methods 17, 328–334 (2020).


Google Scholar
 

Sok, C. L., Rossjohn, J. & Gully, B. S. The evolving portrait of gammadelta TCR recognition determinants. J. Immunol. 213, 543–552 (2024).


Google Scholar
 

Roomp, K. & Domingues, F. S. Predicting interactions between T cell receptors and MHC-peptide complexes. Mol. Immunol. 48, 553–562 (2011).


Google Scholar
 

Xie, N. et al. Neoantigens: promising targets for cancer therapy. Signal Transduct. Target Ther. 8, 9 (2023).


Google Scholar
 

Sharma, P. et al. Immune checkpoint therapy-current perspectives and future directions. Cell 186, 1652–1669 (2023).


Google Scholar
 

Patel, K. K., Tariveranmoshabad, M., Kadu, S., Shobaki, N. & June, C. From concept to cure: the evolution of CAR-T cell therapy. Mol. Ther. 33, 2123–2140 (2025).

Vivier, E. et al. Natural killer cell therapies. Nature 626, 727–736 (2024).


Google Scholar
 

Carlsten, M. et al. Checkpoint inhibition of KIR2D with the monoclonal antibody IPH2101 induces contraction and hyporesponsiveness of NK cells in patients with myeloma. Clin. Cancer Res. 22, 5211–5222 (2016).


Google Scholar
 

Wang, Z. et al. Universal PCR amplification of mouse immunoglobulin gene variable regions: the design of degenerate primers and an assessment of the effect of DNA polymerase 3’ to 5’ exonuclease activity. J. Immunol. Methods 233, 167–177 (2000).


Google Scholar
 

Lo, M. et al. Effector-attenuating substitutions that maintain antibody stability and reduce toxicity in mice. J. Biol. Chem. 292, 3900–3908 (2017).


Google Scholar
 

Jiang, J. et al. Structural mechanism of tapasin-mediated MHC-I peptide loading in antigen presentation. Nat. Commun. 13, 5470 (2022).


Google Scholar
 

Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).


Google Scholar
 

Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).


Google Scholar
 

Punjani, A. & Fleet, D. J. 3DFlex: determining structure and motion of flexible proteins from cryo-EM. Nat. Methods 20, 860–870 (2023).


Google Scholar
 

Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).


Google Scholar
 

McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).


Google Scholar
 

Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).


Google Scholar
 

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).


Google Scholar
 

PyMOLThe PyMOL Molecular Graphics System, Version 3.0 Schrödinger, LLC.

Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).


Google Scholar
 

Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).


Google Scholar
 

Huang, J. & MacKerell, A. D. Jr. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem. 34, 2135–2145 (2013).


Google Scholar
 

Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).


Google Scholar
 

Jorgensen, W. L., Chandrasekhar, J., Buckner, J. K. & Madura, J. D. Computer simulations of organic reactions in solution. Ann. N. Y. Acad. Sci. 482, 198–209 (1986).


Google Scholar
 

Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).


Google Scholar
 

Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).


Google Scholar
 

Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–8, 27–8 (1996).