Smith, J. P., Thompson, J. F. & Ellwood, D. A. Hospital system costs of artificial infant feeding: estimates for the Australian capital territory. Aust N Z. J. Public. Health. 26, 543–551 (2002).

Article 
PubMed 

Google Scholar
 

World Health Organization. Global strategy for infant and young child feeding. World Health Organ. 1–5 (2001).

American Academy of Pediatrics. Breastfeeding and the use of human milk. Pediatrics 115, 496–506 (2005).

Article 

Google Scholar
 

Grummer-Strawn, L. M. & Mei, Z. Does breastfeeding protect against pediatric overweight? Analysis of longitudinal data from the centers for disease control and prevention pediatric nutrition surveillance system. Pediatrics 113, e81–e86 (2004).

Article 
PubMed 

Google Scholar
 

Quinn, P. J. et al. The effect of breastfeeding on child development at 5 years: a cohort study. J. Paediatr. Child. Health. 37, 465–469 (2001).

Article 
CAS 
PubMed 

Google Scholar
 

Oddy, W. H., De Klerk, N. H., Sly, P. D. & Holt, P. G. The effects of respiratory infections, atopy, and breastfeeding on childhood asthma. Eur. Respir J. 19, 899–905 (2002).

Article 
CAS 
PubMed 

Google Scholar
 

Bachrach, V. R. G., Schwarz, E. & Bachrach, L. R. Breastfeeding and the risk of hospitalization for respiratory disease in infancy: a meta-analysis. Arch. Pediatr. Adolesc. Med. 157, 237–243 (2003).

Article 
PubMed 

Google Scholar
 

Suliman, O. et al. The effect of weaning practices on the nutritional and health status of Saudi preschool children. Cureus 15, e47273 (2023).

PubMed 
PubMed Central 

Google Scholar
 

White, J. M. Weaning: what influences the timing?. Community Pract. 82, 34–37 (2009).

PubMed 

Google Scholar
 

Tarrant, M. et al. Breastfeeding and weaning practices among Hong Kong mothers: a prospective study. BMC Pregnancy Childbirth. 10, 1–12 (2010).

Article 

Google Scholar
 

Ajmal, S., Ajmal, L., Ajmal, M. & Nawaz, G. Association of malnutrition with weaning practices among infants in Pakistan. Cureus 14, e31018 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Amr, M. & Farid, A. Impact of cow, buffalo, goat or camel milk consumption on oxidative stress, inflammation and immune response post weaning time. Sci. Rep. 14, 9967 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mustafa, A. B. et al. Impact of early weaning on constituents and nutritional values of camel milk in modern system. Open. Vet. J. 10, 232–238 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Liu, Y. & Zhang, F. Comparison of whole goat milk and its major fractions regarding the modulation of gut microbiota. J. Sci. Food Agric. 102, 3618–3627 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Ayoub, M. A. et al. Invited review: camel milk–derived bioactive peptides and diabetes—Molecular view and perspectives. J. Dairy. Sci. 107, 649–668 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Liu, Y., Cai, J. & Zhang, F. Functional comparison of breast milk, cow milk and goat milk based on changes in the intestinal flora of mice. LWT – Food Sci. Technol. 150, 111976 (2021).

Article 
CAS 

Google Scholar
 

Bakry, I. A. et al. How does camel milk fat profile compare with that of human milk fat to serve as a substitute for human milk? Int. Dairy. J. 146, 105738 (2023).

Article 
CAS 

Google Scholar
 

Al-Awadi, F. M. & Srikumar, T. S. Trace elements and their distribution in protein fractions of camel milk in comparison to other commonly consumed milks. J. Dairy. Res. 68, 463–469 (2001).

Article 
CAS 
PubMed 

Google Scholar
 

Ismail, L. C. et al. Camel milk consumption patterns and perceptions in the UAE: A cross-sectional study. J. Nutr. Sci. 11, e59 (2022).

Article 

Google Scholar
 

Mirmiran, P., Ejtahed, H. S., Angoorani, P., Eslami, F. & Azizi, F. Camel milk has beneficial effects on diabetes mellitus: A systematic review. Int. J. Endocrinol. Metab. 15, e42176 (2017).


Google Scholar
 

Ayoub, M. A., Palakkott, A. R., Ashraf, A. & Iratni, R. The molecular basis of the anti-diabetic properties of camel milk. Diabetes Res. Clin. Pract. 146, 305–312 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Amr, M., Mohie-Eldinn, M. & Farid, A. Evaluation of buffalo, cow, goat and camel milk consumption on multiple health outcomes in male and female Sprague Dawley rats. Int. Dairy. J. 146, 105760 (2023).

Article 
CAS 

Google Scholar
 

Agoston, D. V. How to translate time? The Temporal aspect of human and rodent biology. Front. Neurol. 8, 92 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Almasri, R. S., Bedir, A. S., Ranneh, Y. K., El-Tarabily, K. A. & Al Raish, S. M. Benefits of camel milk over cow and goat milk for infant and adult health in fighting chronic diseases: A review. Nutrients 16, 3848 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Riley, L. K., Rupert, J. & Boucher, O. Nutrition in toddlers. Am. Fam Physician. 98, 227–233 (2018).

PubMed 

Google Scholar
 

Liu, Z., Moate, P. & Rochfort, S. A simplified protocol for fatty acid profiling of milk fat without lipid extraction. Int. Dairy. J. 90, 68–71 (2019).

Article 
CAS 

Google Scholar
 

Kamal, A. M., Salama, O. A. & El-Saied, K. M. Changes in amino acids profile of camel milk protein during the early lactation. Int. J. Dairy. Sci. 2, 226–234 (2007).

Article 
CAS 

Google Scholar
 

Antakli, S., Sarkees, N. & Sarraf, T. Determination of water-soluble vitamins B1, B2, B3, B6, B9, B12 and C on C18 column with particle size 3 µM in some manufactured food products by HPLC with UV-DAD/FLD detection. Int. J. Pharm. Pharm. Sci. 7, 219–224 (2015).

CAS 

Google Scholar
 

Guneser, O. & Yuceer, Y. K. Effect of ultraviolet light on water- and fat-soluble vitamins in cow and goat milk. J. Dairy. Sci. 95, 6230–6241 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Wei, W. et al. Phospholipid composition and fat globule structure I: comparison of human milk fat from different gestational ages, lactation stages, and infant formulas. J. Agric. Food Chem. 67, 13922–13928 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

World Health Organization Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height: Methods and Development (World Health Organization, 2006).

World Health Organization. Guideline: Updates on the Management of Severe Acute Malnutrition in Infants and Children (World Health Organization, 2013).

Van Loveren, H., Verlaan, A. P. J. & Vos, J. G. An enzyme-linked immunosorbent assay of anti-sheep red blood cell antibodies of the classes M, G, and A in the rat. Int. J. Immunopharmacol. 13, 689–695 (1991).

Article 
PubMed 

Google Scholar
 

Bourguignon, C., Dupuy, A. M., Coste, T., Michel, F. & Cristol, J. P. Evaluation of NM-BAPTA method for plasma total calcium measurement on Cobas 8000®. Clin. Biochem. 47, 636–639 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Costa, M. B., Lanna, C. M. M. & Braga, M. H. Assessment of asymptomatic hypercalcemia in outpatients. J. Bras. Patol. Med. Lab. 44, 329–335 (2008).

CAS 

Google Scholar
 

Arain, M. A. et al. Nutritional significance and promising therapeutic/medicinal application of camel milk as a functional food in human and animals: a comprehensive review. Animal Biotechnol. 34 (6), 1988–2005 (2023).

Article 
CAS 

Google Scholar
 

Arain, M. A. et al. Exploring the anti-diabetic properties of camel milk: effects on blood glucose, antioxidant defense, and organ histo-morphological features in rabbits. J. Mol. Histol. 56 (2), 92 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Muthukumaran, M. S., Mudgil, P., Baba, W. N., Ayoub, M. A. & Maqsood, S. A comprehensive review on health benefits, nutritional composition and processed products of camel milk. Food Rev. Int. 39, 3080–3106 (2023).

Article 
CAS 

Google Scholar
 

Mohammaddin, A. et al. Effects of camel milk in dyslipidaemia: A randomized clinical trial. Int. Dairy. J. 84, 79–84 (2018).

Article 
CAS 

Google Scholar
 

Arain, M. A., Khaskheli, G. B., Barham, G. S. & Marghazani, I. B. Lactoferrin’s role in modulating NF-κB pathway to alleviate diabetes-associated inflammation: A novel in-silico study. Heliyon 10 (14), e34051 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ho, T. M., Zou, Z. & Bansal, N. Camel milk: A review of its nutritional value, heat stability, and potential food products. Food Res. Int. 153, 110870 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Seifu, E. Recent advances on camel milk: nutritional and health benefits and processing implications—A review. AIMS Agric. Food. 7, 777–804 (2022).

Article 

Google Scholar
 

Li, R. R. et al. Protein profile of whole camel milk resulting from commercial thermal treatment. LWT – Food Sci. Technol. 134, 110256 (2020).

Article 
CAS 

Google Scholar
 

Nayik, G. A. et al. Nutritional profile, processing and potential products: A comparative review of goat milk. Dairy 3, 622–647 (2022).

Article 

Google Scholar
 

Medhammar, E. et al. Composition of milk from minor dairy animals and Buffalo breeds: a biodiversity perspective. J. Sci. Food Agric. 92, 445–474 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Zhao, L., Zhang, J., Ge, W. & Wang, J. Comparative lipidomics analysis of human and ruminant milk reveals variation in composition and structural characteristics. J. Agric. Food Chem. 70, 8994–9006 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Seyiti, S., Kelimu, A. & Yusufu, G. Bactrian camel milk: chemical Composition, Bioactivities, processing Techniques, and economic potential in China. Molecules 29, 4680 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zou, X. et al. Lipid composition analysis of milk fats from different mammalian species: potential for use as human milk fat substitutes. J. Agric. Food Chem. 61, 7070–7080 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Gao, D., Mu, Q., Liu, L. & Guo, J. Determination and comparison on protein and amino acids profile of four kinds of livestock milk in inner Mongolian. Food Sci. 42, 267–272 (2017).


Google Scholar
 

Bakry, I. A. et al. Comparative characterisation of fat fractions extracted from Egyptian and Chinese camel milk. Int. Dairy. J. 105, 104691 (2020).

Article 
CAS 

Google Scholar
 

Teng, F., Wang, P., Yang, L., Ma, Y. & Day, L. Quantification of fatty acids in human, cow, buffalo, goat, yak, and camel milk using an improved one-step GC-FID method. Food Anal. Methods. 10, 2881–2889 (2019).

Article 

Google Scholar
 

United States Department of Agriculture. Dietary Guidelines for Americans 2020–2025 (USDA Center for Nutrition Policy and Promotion, 2020).

Williams, K. M. Update on bone health in pediatric chronic disease. Endocrinol. Metab. Clin. North. Am. 45, 433–441 (2016).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Jiao, L. et al. Estrogen and calcium handling proteins: new discoveries and mechanisms in cardiovascular diseases. Am. J. Physiol. -Heart Circ. Physiol. 318, H820–H829 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Soldin, O. P., Hoffman, E. G., Waring, M. A. & Soldin, S. J. Pediatric reference intervals for FSH, LH, estradiol, T3, free T3, cortisol, and growth hormone on the DPC IMMULITE 1000. Clin. Chim. Acta. 355, 205–210 (2005).

Article 
CAS 

Google Scholar
 

Djakpo, D. K., Wang, Z. Q. & Shrestha, M. The significance of transaminase ratio (AST/ALT) in acute myocardial infarction. Arch. Med. Sci. Atheroscler Dis. 5, 279–283 (2020).

Article 

Google Scholar
 

Kashani, K., Rosner, M. H. & Ostermann, M. Creatinine: from physiology to clinical application. Eur. J. Intern. Med. 72, 9–14 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Haines, R. W. et al. Elevated urea-to-creatinine ratio provides a biochemical signature of muscle catabolism and persistent critical illness after major trauma. Intensive Care Med. 45, 1718–1731 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Griffin, J. W. & Bradshaw, P. C. Effects of a high-protein diet and liver disease in an in Silico model of human ammonia metabolism. Theor. Biol. Med. Model. 16, 1–14 (2019).

Article 
CAS 

Google Scholar
 

Parhofer, K. G. & Laufs, U. Lipid profile and lipoprotein (a) testing. Dtsch. Ärztebl Int. 120, 582 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Holven, K. B. & van Lennep, J. R. Sex differences in lipids: a life course approach. Atherosclerosis 384, 117270 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Moghbeli, M. et al. Cytokines and the immune response in obesity-related disorders. Adv. Clin. Chem. 101, 135–168 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Bouman, A., Heineman, M. J. & Faas, M. M. Sex hormones and the immune response in humans. Hum. Reprod. Update. 11, 411–423 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Cunningham, M. & Gilkeson, G. Estrogen receptors in immunity and autoimmunity. Clin. Rev. Allergy Immunol. 40, 66–73 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Kovats, S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell. Immunol. 294, 63–69 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hewagama, A., Patel, D., Yarlagadda, S., Strickland, F. M. & Richardson, B. C. Stronger inflammatory/cytotoxic T-cell response in women identified by microarray analysis. Genes Immun. 10 (5), 509–516 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Grimaldi, C. M., Cleary, J., Dagtas, A. S., Moussai, D. & Diamond, B. Estrogen alters thresholds for B cell apoptosis and activation. J. Clin. Invest. 109, 1625–1633 (2002).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pauklin, S., Sernández, I. V., Bachmann, G., Ramiro, A. R. & Petersen-Mahrt, S. K. Estrogen directly activates AID transcription and function. J. Exp. Med. 206, 99–111 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fink, A. L., Engle, K., Ursin, R. L., Tang, W. Y. & Klein, S. L. Biological sex affects vaccine efficacy and protection against influenza in mice. Proc. Natl. Acad. Sci. U.S.A. 115, 12477–12482 (2015).

Article 
ADS 

Google Scholar
 

García-Durán, M. et al. López-Farré, A. Estrogen stimulates neuronal nitric oxide synthase protein expression in human neutrophils. Circ. Res. 85, 1020–1026 (1999).

Article 
PubMed 

Google Scholar
 

Marriott, I., Bost, K. L. & Huet-Hudson, Y. M. Sexual dimorphism in expression of receptors for bacterial lipopolysaccharides in murine macrophages: a possible mechanism for gender-based differences in endotoxic shock susceptibility. J. Reprod. Immunol. 71, 12–27 (2006).

Article 
CAS 
PubMed 

Google Scholar
 

Giefing-Kröll, C., Berger, P., Lepperdinger, G. & Grubeck-Loebenstein, B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell. 14, 309–321 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Libert, C., Dejager, L. & Pinheiro, I. The X chromosome in immune functions: when a chromosome makes the difference. Nat. Rev. Immunol. 10, 594–604 (2010).

Article 
CAS 
PubMed 

Google Scholar
 

Whitacre, C. C. Sex differences in autoimmune disease. Nat. Immunol. 2, 777–780 (2001).

Article 
CAS 
PubMed 

Google Scholar
 

Martínez, Y. et al. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids. 49, 2091–2098 (2017).

Article 
PubMed 

Google Scholar
 

Carr, A. C. & Maggini, S. Vitamin C and immune function. Nutrients 9, 1211 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Radzikowska, U. et al. The influence of dietary fatty acids on immune responses. Nutrients 11, 2990 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Küllenberg, D., Taylor, L. A., Schneider, M. & Massing, U. Health effects of dietary phospholipids. Lipids Health Dis. 11, 1–16 (2012).

Article 

Google Scholar
 

O’Donnell, V. B., Rossjohn, J. & Wakelam, M. J. Phospholipid signaling in innate immune cells. J. Clin. Invest. 128, 2670–2679 (2019).

Article 

Google Scholar
 

Kandeel, M., Morsy, M. A., Khodair, A., Alhojaily, S. & K. M. & Meta-analysis of the efficacy of camel milk consumption for improving autism symptoms in children in randomized clinical trials. Open. Vet. J. 14, 2441–2452 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mebius, R. E. & Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol. 5, 606–616 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Bronte, V. & Pittet, M. J. The spleen in local and systemic regulation of immunity. Immunity 39, 806–818 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rouse, B. T. & Sehrawat, S. Immunity and immunopathology to viruses: what decides the outcome? Nat. Rev. Immunol. 10, 514–526 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar