Song, L., Liang, X., Zhu, M., Su, Q. & Li, F. Knowledge mapping of immunotherapy in cervical carcinoma: a bibliometric analysis (2000-2023). Front. Immunol. 14, 1328103 (2023).
Francoeur, A. A., Monk, B. J. & Tewari, K. S. Treatment advances across the cervical cancer spectrum. Nat. Rev. Clin. Oncol. 22, 182–199 (2025).
Ferrall, L., Lin, K. Y., Roden, R. B. S., Hung, C. F. & Wu, T. C. Cervical cancer immunotherapy: facts and hopes. Clin. Cancer Res. 27, 4953–4973 (2021).
Cao, G. et al. Single-cell dissection of cervical cancer reveals key subsets of the tumor immune microenvironment. EMBO J. 42, e110757 (2023).
Gore, M., Kabekkodu, S. P. & Chakrabarty, S. Exploring the metabolic alterations in cervical cancer induced by HPV oncoproteins: from mechanisms to therapeutic targets. Biochim Biophys. Acta Rev. Cancer 1880, 189292 (2025).
Ping, P., Li, J., Lei, H. & Xu, X. Fatty acid metabolism: a new therapeutic target for cervical cancer. Front Oncol. 13, 1111778 (2023).
Mozihim, A. K., Chung, I., Said, N. & Jamil, A. H. A. Reprogramming of fatty acid metabolism in gynaecological cancers: is there a role for oestradiol? Metabolites 12, 350 (2022).
Su, R. et al. Immunometabolism in cancer: basic mechanisms and new targeting strategy. Cell Death Discov. 10, 236 (2024).
Zhang, M. et al. ACAT2 suppresses the ubiquitination of YAP1 to enhance the proliferation and metastasis ability of gastric cancer via the upregulation of SETD7. Cell Death Dis. 15, 297 (2024).
Sun, T. & Xiao, X. Targeting ACAT1 in cancer: from threat to treatment. Front. Oncol. 14, 1395192 (2024).
Reina-Campos, M. et al. Metabolic programs of T cell tissue residency empower tumour immunity. Nature 621, 179–187 (2023).
Okuno, Y., Fukuhara, A., Otsuki, M. & Shimomura, I. ARMC5-CUL3 E3 ligase targets full-length SREBF in adrenocortical tumors. JCI Insight 7, e151390 (2022).
Bernardini, J. P., Lazarou, M. & Dewson, G. Parkin and mitophagy in cancer. Oncogene 36, 1315–1327 (2017).
Han, R., Liu, Y., Li, S., Li, X. J. & Yang, W. PINK1-PRKN mediated mitophagy: differences between in vitro and in vivo models. Autophagy 19, 1396–1405 (2023).
Tang, Z., Kang, B., Li, C., Chen, T. & Zhang, Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47, W556–W560 (2019).
Liberzon, A. et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).
Gyorffy, B. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation 5, 100625 (2024).
Li, B. et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 17, 174 (2016).
Wang, J. TFTF: An R-based integrative tool for decoding human transcription factor-target interactions. Biomolecules 14, 749 (2024).
Ovek Baydar, D. et al. JASPAR 2026: expansion of transcription factor binding profiles and integration of deep learning models. Nucleic Acids Res. 54, D184–D193 (2025).
Wang, X. et al. UbiBrowser 2.0: a comprehensive resource for proteome-wide known and predicted ubiquitin ligase/deubiquitinase-substrate interactions in eukaryotic species. Nucleic Acids Res. 50, D719–D728 (2022).
Huang, T. X. et al. ATP6V0A1-dependent cholesterol absorption in colorectal cancer cells triggers immunosuppressive signaling to inactivate memory CD8(+) T cells. Nat. Commun. 15, 5680 (2024).
Wang, Q. et al. Regulation of PD-L1 through direct binding of cholesterol to CRAC motifs. Sci. Adv. 8, eabq4722 (2022).
Heng, J. et al. Acetyl-CoA acetyltransferase 2 confers radioresistance by inhibiting ferroptosis in esophageal squamous cell carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 117, 966–978 (2023).
Vergani, E. et al. Targeting of the lipid metabolism impairs resistance to BRAF kinase inhibitor in melanoma. Front. Cell Dev. Biol. 10, 927118 (2022).
Huang, Q., Xu, Y. F., Li, H. P. & Zhang, T. Bioinformatics and experimental approach reveal potential prognostic and immunological roles of key mitochondrial metabolism-related genes in cervical cancer. Front. Oncol. 15, 1522910 (2025).
Mei, X. et al. DHCR7 promotes lymph node metastasis in cervical cancer through cholesterol reprogramming-mediated activation of the KANK4/PI3K/AKT axis and VEGF-C secretion. Cancer Lett. 584, 216609 (2024).
Vona, R., Iessi, E. & Matarrese, P. Role of cholesterol and lipid rafts in cancer signaling: a promising therapeutic opportunity?. Front. Cell Dev. Biol. 9, 622908 (2021).
Shao, D. et al. Construction and mechanism of IL-15-based coactivated polymeric micelles for NK cell immunotherapy. Adv. Health. Mater. 13, e2302589 (2024).
Yang, W. et al. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature 531, 651–655 (2016).
Liu, J. Cholesterol metabolism: a positive target to revoke the function of exhausted CAR-NK cells in tumor microenvironment. Front. Pharm. 15, 1440869 (2024).
Yue, X. et al. SREBF2-STARD4 axis confers sorafenib resistance in hepatocellular carcinoma by regulating mitochondrial cholesterol homeostasis. Cancer Sci. 114, 477–489 (2023).
Zhang, J. et al. Cholesterol homeostasis confers glioma malignancy triggered by hnRNPA2B1-dependent regulation of SREBP2 and LDLR. Neuro Oncol. 26, 684–700 (2024).
Liu, F. et al. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol. Cancer 23, 148 (2024).
Sun, X. et al. Histone deacetylase inhibitors inhibit cervical cancer growth through Parkin acetylation-mediated mitophagy. Acta Pharm. Sin. B 12, 838–852 (2022).
Sun, X. et al. Parkin regulates IGF2BP3 through ubiquitination in the tumourigenesis of cervical cancer. Clin. Transl. Med. 13, e1457 (2023).
Sun, X. et al. The tumor suppressor Parkin exerts anticancer effects through regulating mitochondrial GAPDH activity. Oncogene 43, 3215–3226 (2024).
Shuwen, H. et al. Cholesterol induction in CD8(+) T cell exhaustion in colorectal cancer via the regulation of endoplasmic reticulum-mitochondria contact sites. Cancer Immunol. Immunother. 72, 4441–4456 (2023).
Roca-Agujetas, V. et al. Cholesterol alters mitophagy by impairing optineurin recruitment and lysosomal clearance in Alzheimer’s disease. Mol. Neurodegener. 16, 15 (2021).
Roca-Agujetas, V., de Dios, C., Abadin, X. & Colell, A. Upregulation of brain cholesterol levels inhibits mitophagy in Alzheimer disease. Autophagy 17, 1555–1557 (2021).
Zhou, X. et al. Inhibition of DUSP18 impairs cholesterol biosynthesis and promotes anti-tumor immunity in colorectal cancer. Nat. Commun. 15, 5851 (2024).
Guo, X. J. et al. Cholesterol metabolism in tumor immunity: Mechanisms and therapeutic opportunities for cancer. Biochem. Pharm. 234, 116802 (2025).
Patel, H. K. et al. Plasma membrane cholesterol modulates cellular vacuolation induced by the Helicobacter pylori vacuolating cytotoxin. Infect. Immun. 70, 4112–4123 (2002).
Wang, D. et al. FAT4 overexpression promotes antitumor immunity by regulating the beta-catenin/STT3/PD-L1 axis in cervical cancer. J. Exp. Clin. Cancer Res. 42, 222 (2023).
Kong, Q. et al. Alternative splicing of GSDMB modulates killer lymphocyte-triggered pyroptosis. Sci. Immunol. 8, eadg3196 (2023).