Song, L., Liang, X., Zhu, M., Su, Q. & Li, F. Knowledge mapping of immunotherapy in cervical carcinoma: a bibliometric analysis (2000-2023). Front. Immunol. 14, 1328103 (2023).


Google Scholar
 

Francoeur, A. A., Monk, B. J. & Tewari, K. S. Treatment advances across the cervical cancer spectrum. Nat. Rev. Clin. Oncol. 22, 182–199 (2025).


Google Scholar
 

Ferrall, L., Lin, K. Y., Roden, R. B. S., Hung, C. F. & Wu, T. C. Cervical cancer immunotherapy: facts and hopes. Clin. Cancer Res. 27, 4953–4973 (2021).


Google Scholar
 

Cao, G. et al. Single-cell dissection of cervical cancer reveals key subsets of the tumor immune microenvironment. EMBO J. 42, e110757 (2023).


Google Scholar
 

Gore, M., Kabekkodu, S. P. & Chakrabarty, S. Exploring the metabolic alterations in cervical cancer induced by HPV oncoproteins: from mechanisms to therapeutic targets. Biochim Biophys. Acta Rev. Cancer 1880, 189292 (2025).


Google Scholar
 

Ping, P., Li, J., Lei, H. & Xu, X. Fatty acid metabolism: a new therapeutic target for cervical cancer. Front Oncol. 13, 1111778 (2023).


Google Scholar
 

Mozihim, A. K., Chung, I., Said, N. & Jamil, A. H. A. Reprogramming of fatty acid metabolism in gynaecological cancers: is there a role for oestradiol? Metabolites 12, 350 (2022).

Su, R. et al. Immunometabolism in cancer: basic mechanisms and new targeting strategy. Cell Death Discov. 10, 236 (2024).


Google Scholar
 

Zhang, M. et al. ACAT2 suppresses the ubiquitination of YAP1 to enhance the proliferation and metastasis ability of gastric cancer via the upregulation of SETD7. Cell Death Dis. 15, 297 (2024).


Google Scholar
 

Sun, T. & Xiao, X. Targeting ACAT1 in cancer: from threat to treatment. Front. Oncol. 14, 1395192 (2024).


Google Scholar
 

Reina-Campos, M. et al. Metabolic programs of T cell tissue residency empower tumour immunity. Nature 621, 179–187 (2023).


Google Scholar
 

Okuno, Y., Fukuhara, A., Otsuki, M. & Shimomura, I. ARMC5-CUL3 E3 ligase targets full-length SREBF in adrenocortical tumors. JCI Insight 7, e151390 (2022).

Bernardini, J. P., Lazarou, M. & Dewson, G. Parkin and mitophagy in cancer. Oncogene 36, 1315–1327 (2017).


Google Scholar
 

Han, R., Liu, Y., Li, S., Li, X. J. & Yang, W. PINK1-PRKN mediated mitophagy: differences between in vitro and in vivo models. Autophagy 19, 1396–1405 (2023).


Google Scholar
 

Tang, Z., Kang, B., Li, C., Chen, T. & Zhang, Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47, W556–W560 (2019).


Google Scholar
 

Liberzon, A. et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).


Google Scholar
 

Gyorffy, B. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation 5, 100625 (2024).


Google Scholar
 

Li, B. et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 17, 174 (2016).


Google Scholar
 

Wang, J. TFTF: An R-based integrative tool for decoding human transcription factor-target interactions. Biomolecules 14, 749 (2024).

Ovek Baydar, D. et al. JASPAR 2026: expansion of transcription factor binding profiles and integration of deep learning models. Nucleic Acids Res. 54, D184–D193 (2025).

Wang, X. et al. UbiBrowser 2.0: a comprehensive resource for proteome-wide known and predicted ubiquitin ligase/deubiquitinase-substrate interactions in eukaryotic species. Nucleic Acids Res. 50, D719–D728 (2022).


Google Scholar
 

Huang, T. X. et al. ATP6V0A1-dependent cholesterol absorption in colorectal cancer cells triggers immunosuppressive signaling to inactivate memory CD8(+) T cells. Nat. Commun. 15, 5680 (2024).


Google Scholar
 

Wang, Q. et al. Regulation of PD-L1 through direct binding of cholesterol to CRAC motifs. Sci. Adv. 8, eabq4722 (2022).


Google Scholar
 

Heng, J. et al. Acetyl-CoA acetyltransferase 2 confers radioresistance by inhibiting ferroptosis in esophageal squamous cell carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 117, 966–978 (2023).


Google Scholar
 

Vergani, E. et al. Targeting of the lipid metabolism impairs resistance to BRAF kinase inhibitor in melanoma. Front. Cell Dev. Biol. 10, 927118 (2022).


Google Scholar
 

Huang, Q., Xu, Y. F., Li, H. P. & Zhang, T. Bioinformatics and experimental approach reveal potential prognostic and immunological roles of key mitochondrial metabolism-related genes in cervical cancer. Front. Oncol. 15, 1522910 (2025).


Google Scholar
 

Mei, X. et al. DHCR7 promotes lymph node metastasis in cervical cancer through cholesterol reprogramming-mediated activation of the KANK4/PI3K/AKT axis and VEGF-C secretion. Cancer Lett. 584, 216609 (2024).


Google Scholar
 

Vona, R., Iessi, E. & Matarrese, P. Role of cholesterol and lipid rafts in cancer signaling: a promising therapeutic opportunity?. Front. Cell Dev. Biol. 9, 622908 (2021).


Google Scholar
 

Shao, D. et al. Construction and mechanism of IL-15-based coactivated polymeric micelles for NK cell immunotherapy. Adv. Health. Mater. 13, e2302589 (2024).


Google Scholar
 

Yang, W. et al. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature 531, 651–655 (2016).


Google Scholar
 

Liu, J. Cholesterol metabolism: a positive target to revoke the function of exhausted CAR-NK cells in tumor microenvironment. Front. Pharm. 15, 1440869 (2024).


Google Scholar
 

Yue, X. et al. SREBF2-STARD4 axis confers sorafenib resistance in hepatocellular carcinoma by regulating mitochondrial cholesterol homeostasis. Cancer Sci. 114, 477–489 (2023).


Google Scholar
 

Zhang, J. et al. Cholesterol homeostasis confers glioma malignancy triggered by hnRNPA2B1-dependent regulation of SREBP2 and LDLR. Neuro Oncol. 26, 684–700 (2024).


Google Scholar
 

Liu, F. et al. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol. Cancer 23, 148 (2024).


Google Scholar
 

Sun, X. et al. Histone deacetylase inhibitors inhibit cervical cancer growth through Parkin acetylation-mediated mitophagy. Acta Pharm. Sin. B 12, 838–852 (2022).


Google Scholar
 

Sun, X. et al. Parkin regulates IGF2BP3 through ubiquitination in the tumourigenesis of cervical cancer. Clin. Transl. Med. 13, e1457 (2023).


Google Scholar
 

Sun, X. et al. The tumor suppressor Parkin exerts anticancer effects through regulating mitochondrial GAPDH activity. Oncogene 43, 3215–3226 (2024).


Google Scholar
 

Shuwen, H. et al. Cholesterol induction in CD8(+) T cell exhaustion in colorectal cancer via the regulation of endoplasmic reticulum-mitochondria contact sites. Cancer Immunol. Immunother. 72, 4441–4456 (2023).


Google Scholar
 

Roca-Agujetas, V. et al. Cholesterol alters mitophagy by impairing optineurin recruitment and lysosomal clearance in Alzheimer’s disease. Mol. Neurodegener. 16, 15 (2021).


Google Scholar
 

Roca-Agujetas, V., de Dios, C., Abadin, X. & Colell, A. Upregulation of brain cholesterol levels inhibits mitophagy in Alzheimer disease. Autophagy 17, 1555–1557 (2021).


Google Scholar
 

Zhou, X. et al. Inhibition of DUSP18 impairs cholesterol biosynthesis and promotes anti-tumor immunity in colorectal cancer. Nat. Commun. 15, 5851 (2024).


Google Scholar
 

Guo, X. J. et al. Cholesterol metabolism in tumor immunity: Mechanisms and therapeutic opportunities for cancer. Biochem. Pharm. 234, 116802 (2025).


Google Scholar
 

Patel, H. K. et al. Plasma membrane cholesterol modulates cellular vacuolation induced by the Helicobacter pylori vacuolating cytotoxin. Infect. Immun. 70, 4112–4123 (2002).


Google Scholar
 

Wang, D. et al. FAT4 overexpression promotes antitumor immunity by regulating the beta-catenin/STT3/PD-L1 axis in cervical cancer. J. Exp. Clin. Cancer Res. 42, 222 (2023).


Google Scholar
 

Kong, Q. et al. Alternative splicing of GSDMB modulates killer lymphocyte-triggered pyroptosis. Sci. Immunol. 8, eadg3196 (2023).


Google Scholar