Wijsenbeek, M. & Cottin, V. Spectrum of fibrotic lung diseases. N. Engl. J. Med. 383, 958–968 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Plikus, M. V. et al. Fibroblasts: origins, definitions, and functions in health and disease. Cell 184, 3852–3872 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Henderson, N. C., Rieder, F. & Wynn, T. A. Fibrosis: from mechanisms to medicines. Nature 587, 555–566 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

George, P. M. et al. Progressive fibrosing interstitial lung disease: clinical uncertainties, consensus recommendations, and research priorities. Lancet Respir. Med. 8, 925–934 (2020).

Article 
PubMed 

Google Scholar
 

Lederer, D. J. & Martinez, F. J. Idiopathic pulmonary fibrosis. N. Engl. J. Med. 378, 1811–1823 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Wells, A. U., Brown, K. K., Flaherty, K. R., Kolb, M. & Thannickal Victor, J. What’s in a name? That which we call IPF, by any other name would act the same. Eur. Respir. J. 51, 1800692 (2018).

Article 
PubMed 

Google Scholar
 

Raghu, G. & Fleming, T. R. Moving forward in IPF: lessons learned from clinical trials. Lancet Respir. Med. 12, 583–585 (2024).

Article 
PubMed 

Google Scholar
 

Noble, P. W. et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 377, 1760–1769 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Richeldi, L. et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2071–2082 (2014).

Article 
PubMed 

Google Scholar
 

King, T. E. et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2083–2092 (2014).

Article 
PubMed 

Google Scholar
 

Richeldi, L. et al. Nerandomilast in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 392, 2193–2202 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Distler, O. et al. Nintedanib for systemic sclerosis-associated interstitial lung disease. N. Engl. J. Med. 380, 2518–2528 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Maher, T. M. et al. Pirfenidone in patients with unclassifiable progressive fibrosing interstitial lung disease: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir. Med. 8, 147–157 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Flaherty, K. R. et al. Nintedanib in progressive fibrosing interstitial lung diseases. N. Engl. J. Med. 381, 1718–1727 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Behr, J. et al. Pirfenidone in patients with progressive fibrotic interstitial lung diseases other than idiopathic pulmonary fibrosis (RELIEF): a double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir. Med. 9, 476–486 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Maher, T. M. et al. Nerandomilast in patients with progressive pulmonary fibrosis. N. Engl. J. Med. 392, 2203–2214 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Adams, T. S. et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci. Adv. 6, eaba1983 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Habermann, A. C. et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci. Adv. 6, eaba1972 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Franzén, L. et al. Mapping spatially resolved transcriptomes in human and mouse pulmonary fibrosis. Nat. Genet. 56, 1725–1736 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mayr, C. H. et al. Spatial transcriptomic characterization of pathologic niches in IPF. Sci. Adv. 10, eadl5473 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sikkema, L. et al. An integrated cell atlas of the lung in health and disease. Nat. Med. 29, 1563–1577 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tsukui, T. et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat. Commun. 11, 1920 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tsukui, T., Wolters, P. J. & Sheppard, D. Alveolar fibroblast lineage orchestrates lung inflammation and fibrosis. Nature 631, 627–634 (2024). This paper shows that injury-induced pathogenic fibroblasts arise from alveolar fibroblasts after lung injury. A highly orchestrated sequence of fibroblast state transitions, driven by inflammatory and profibrotic cues, is required for effective regeneration.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Valenzi, E. et al. Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. Ann. Rheum. Dis. 78, 1379–1387 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Melms, J. C. et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 595, 114–119 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vannan, A. et al. Spatial transcriptomics identifies molecular niche dysregulation associated with distal lung remodeling in pulmonary fibrosis. Nat. Genet. 57, 647–658 (2025). This study provides a spatially resolved, single-cell map of the human fibrotic lung, revealing niche-specific dysregulation in advanced pulmonary fibrosis.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fabre, T. et al. Identification of a broadly fibrogenic macrophage subset induced by type 3 inflammation. Sci. Immunol. 8, eadd8945 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Schupp, J. C. et al. Integrated single-cell atlas of endothelial cells of the human lung. Circulation 144, 286–302 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Park, J. H. et al. Mortality and risk factors for surgical lung biopsy in patients with idiopathic interstitial pneumonia. Eur. J. Cardio-Thorac. Surg. 31, 1115–1119 (2007).

Article 

Google Scholar
 

Martin, P., Pardo-Pastor, C., Jenkins, R. G. & Rosenblatt, J. Imperfect wound healing sets the stage for chronic diseases. Science 386, eadp2974 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Younesi, F. S., Miller, A. E., Barker, T. H., Rossi, F. M. V. & Hinz, B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat. Rev. Mol. Cell Biol. 25, 617–638 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Hinz, B. Formation and function of the myofibroblast during tissue repair. J. Invest. Dermatol. 127, 526–537 (2007).

Article 
CAS 
PubMed 

Google Scholar
 

Hinz, B. & Lagares, D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat. Rev. Rheumatol. 16, 11–31 (2020). In this seminal review, the authors describe that myofibroblasts are primed for apoptosis but evade programmed cell death through upregulation of pro-survival pathways.

Article 
CAS 
PubMed 

Google Scholar
 

Jun, J.-I. & Lau, L. F. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat. Cell Biol. 12, 676–685 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl Acad. Sci. USA 109, 9448–9453 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hecker, L., Jagirdar, R., Jin, T. & Thannickal, V. J. Reversible differentiation of myofibroblasts by MyoD. Exp. Cell Res. 317, 1914–1921 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Konkimalla, A. et al. Transitional cell states sculpt tissue topology during lung regeneration. Cell Stem Cell 30, 1486–1502.e9 (2023). This study reveals Runx1 as a driver of profibrotic fibroblast states. Runx1 deletion in PDGFRα+ fibroblasts improves fibrosis but disrupts ECM organization and lung architecture.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jones, D. L. et al. An injury-induced mesenchymal–epithelial cell niche coordinates regenerative responses in the lung. Science 386, eado5561 (2024). This study uncovers how alveolar fibroblast plasticity regulates lung repair by modulating stem cell competition between airway-derived and alveolar-derived epithelial progenitors.

Article 
CAS 
PubMed 

Google Scholar
 

Plikus, M. V. et al. Regeneration of fat cells from myofibroblasts during wound healing. Science 355, 748–752 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Merkt, W., Zhou, Y., Han, H. & Lagares, D. Myofibroblast fate plasticity in tissue repair and fibrosis: deactivation, apoptosis, senescence and reprogramming. Wound Repair Regen. 29, 678–691 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Desmoulière, A., Redard, M., Darby, I. & Gabbiani, G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am. J. Pathol. 146, 56–66 (1995).

PubMed 
PubMed Central 

Google Scholar
 

Distler, J. H. W. et al. Shared and distinct mechanisms of fibrosis. Nat. Rev. Rheumatol. 15, 705–730 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Zepp, J. A. & Morrisey, E. E. Cellular crosstalk in the development and regeneration of the respiratory system. Nat. Rev. Mol. Cell Biol. 20, 551–566 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nowarski, R., Jackson, R. & Flavell, R. A. The stromal intervention: regulation of immunity and inflammation at the epithelial–mesenchymal barrier. Cell 168, 362–375 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Basil, M. C. et al. The cellular and physiological basis for lung repair and regeneration: past, present, and future. Cell Stem Cell 26, 482–502 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Greicius, G. et al. PDGFRα+ pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. Proc. Natl Acad. Sci. USA 115, E3173–e3181 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shoshkes-Carmel, M. et al. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature 557, 242–246 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zacharias, W. J. et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 555, 251–255 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nabhan, A. N., Brownfield, D. G., Harbury, P. B., Krasnow, M. A. & Desai, T. J. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science 359, 1118–1123 (2018). In this paper, the authors show that fibroblast-derived WNT signals support AT2 stem cell self-renewal, whereas injury-induced autocrine WNT signals expand the progenitor pool.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zepp, J. A. et al. Distinct mesenchymal lineages and niches promote epithelial self-renewal and myofibrogenesis in the lung. Cell 170, 1134–1148.e10 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fernanda de Mello Costa, M., Weiner, A. I. & Vaughan, A. E. Basal-like progenitor cells: a review of dysplastic alveolar regeneration and remodeling in lung repair. Stem Cell Rep. 15, 1015–1025 (2020).

Article 
CAS 

Google Scholar
 

Zuo, W. et al. p63+Krt5+ distal airway stem cells are essential for lung regeneration. Nature 517, 616–620 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Choi, J. et al. Inflammatory signals induce AT2 cell-derived damage-associated transient progenitors that mediate alveolar regeneration. Cell Stem Cell 27, 366–382.e7 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Narasimhan, H. et al. An aberrant immune–epithelial progenitor niche drives viral lung sequelae. Nature 634, 961–969 (2024). In this study, the authors demonstrate that IFNγ and TNF derived from CD8+ T cells stimulate macrophages to continuously release IL-1β. This drives maintenance of dysplastic epithelial cell progenitors and lung fibrosis after COVID-19 infection.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vaughan, A. E. et al. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature 517, 621–625 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Weiner, A. I. et al. Np63 drives dysplastic alveolar remodeling and restricts epithelial plasticity upon severe lung injury. Cell Rep. 41, 111805 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Taylor, M. S. et al. A conserved distal lung regenerative pathway in acute lung injury. Am. J. Pathol. 188, 1149–1160 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Heinzelmann, K. et al. Single-cell RNA sequencing identifies G-protein coupled receptor 87 as a basal cell marker expressed in distal honeycomb cysts in idiopathic pulmonary fibrosis. Eur. Respir. J. 59, 2102373 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Davidson, S. et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat. Rev. Immunol. 21, 704–717 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Alexandre, Y. O. & Mueller, S. N. Splenic stromal niches in homeostasis and immunity. Nat. Rev. Immunol. 23, 705–719 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Krishnamurty, A. T. & Turley, S. J. Lymph node stromal cells: cartographers of the immune system. Nat. Immunol. 21, 369–380 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Fletcher, A. L., Malhotra, D. & Turley, S. J. Lymph node stroma broaden the peripheral tolerance paradigm. Trends Immunol. 32, 12–18 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Lee, J. W. et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat. Immunol. 8, 181–190 (2007).

Article 
CAS 
PubMed 

Google Scholar
 

Fletcher, A. L. et al. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J. Exp. Med. 207, 689–697 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Malhotra, D. et al. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat. Immunol. 13, 499–510 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Astarita, J. L. et al. The CLEC-2–podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nat. Immunol. 16, 75–84 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Assen, F. P. et al. Multitier mechanics control stromal adaptations in the swelling lymph node. Nat. Immunol. 23, 1246–1255 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fletcher, A. L., Acton, S. E. & Knoblich, K. Lymph node fibroblastic reticular cells in health and disease. Nat. Rev. Immunol. 15, 350–361 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Scandella, E. et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue–inducer cells with stroma of the T cell zone. Nat. Immunol. 9, 667–675 (2008).

Article 
CAS 
PubMed 

Google Scholar
 

Onder, L. et al. IL-7-producing stromal cells are critical for lymph node remodeling. Blood 120, 4675–4683 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Foster, D. S. et al. Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin. Cancer Cell 40, 1392–1406.e7 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pentimalli, T. M. et al. Combining spatial transcriptomics and ECM imaging in 3D for mapping cellular interactions in the tumor microenvironment. Cell Syst. 16, 101261 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gao, Y. et al. Cross-tissue human fibroblast atlas reveals myofibroblast subtypes with distinct roles in immune modulation. Cancer Cell 42, 1764–1783.e10 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Biffi, G. et al. IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9, 282–301 (2019).

Article 
PubMed 

Google Scholar
 

Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Boyd, D. F. et al. Exuberant fibroblast activity compromises lung function via ADAMTS4. Nature 587, 466–471 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med 3, 481–518.e14 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dobie, R. et al. Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Rep. 29, 1832–1847.e8 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Morse, C. et al. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur. Respir. J. 54, 1802441 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Reyfman, P. A. et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199, 1517–1536 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ma, F. et al. Single cell and spatial sequencing define processes by which keratinocytes and fibroblasts amplify inflammatory responses in psoriasis. Nat. Commun. 14, 3455 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wohlfahrt, T. et al. PU.1 controls fibroblast polarization and tissue fibrosis. Nature 566, 344–349 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fang, Y. et al. RUNX2 promotes fibrosis via an alveolar-to-pathological fibroblast transition. Nature 640, 221–230 (2025). This study shows that the transcription factor Runx2 mediates the conversion of alveolar fibroblasts into profibrotic CTHRC1+POSTN+ myofibroblasts. Conditional genetic deletion of Runx2 in alveolar fibroblasts mitigates pulmonary fibrosis.

Article 
CAS 
PubMed 

Google Scholar
 

Lingampally, A. et al. Evidence for a lipofibroblast-to-Cthrc1+ myofibroblast reversible switch during the development and resolution of lung fibrosis in young mice. Eur. Respir. J. 65, 2300482 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mayr, C. H. et al. Sfrp1 inhibits lung fibroblast invasion during transition to injury-induced myofibroblasts. Eur. Respir. J. 63, 2301326 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yang, Z. et al. Distinct mural cells and fibroblasts promote pathogenic plasma cell accumulation in idiopathic pulmonary fibrosis. Eur. Respir. J. 65, 2401114 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ewing-Crystal, N. A. et al. Dynamic fibroblast–immune interactions shape recovery after brain injury. Nature 646, 934–944 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Amuso, V. M. et al. Fibroblast-mediated macrophage recruitment supports acute wound healing. J. Invest. Dermatol. 145, 1781–1797.e8 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Guo, J. L. et al. Histological signatures map anti-fibrotic factors in mouse and human lungs. Nature 641, 993–1004 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Buechler, M. B., Fu, W. & Turley, S. J. Fibroblast–macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 54, 903–915 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Behmoaras, J., Mulder, K., Ginhoux, F. & Petretto, E. The spatial and temporal activation of macrophages during fibrosis. Nat. Rev. Immunol. 25, 816–830 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Duffield, J. S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Amrute, J. M. et al. Targeting immune–fibroblast cell communication in heart failure. Nature 635, 423–433 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Misharin, A. V. et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 214, 2387–2404 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, X. et al. Circuit design features of a stable two-cell system. Cell 172, 744–757.e17 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Adler, M. et al. Principles of cell circuits for tissue repair and fibrosis. iScience 23, 100841 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, J. et al. Profibrotic effect of IL-17A and elevated IL-17RA in idiopathic pulmonary fibrosis and rheumatoid arthritis-associated lung disease support a direct role for IL-17A/IL-17RA in human fibrotic interstitial lung disease. Am. J. Physiol. Lung Cell Mol. Physiol. 316, L487–L497 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Chrysanthopoulou, A. et al. Neutrophil extracellular traps promote differentiation and function of fibroblasts. J. Pathol. 233, 294–307 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Gregory, A. D. et al. Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis. J. Leukoc. Biol. 98, 143–152 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wilson, M. S. et al. Bleomycin and IL-1β-mediated pulmonary fibrosis is IL-17A dependent. J. Exp. Med. 207, 535–552 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mi, S. et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-β1-dependent and -independent mechanisms. J. Immunol. 187, 3003–3014 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Carter, H. et al. CD103+ dendritic cell-fibroblast crosstalk via TLR9, TDO2, and AHR signaling drives lung fibrogenesis. JCI Insight 10, e177072 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lu, Y. Z. et al. CGRP sensory neurons promote tissue healing via neutrophils and macrophages. Nature 628, 604–611 (2024). This study shows that ablation of sensory nociceptors impairs skin wound repair and muscle regeneration after acute tissue injury. It demonstrates that the nociceptor-derived neuropeptide calcitonin gene-related peptide inhibits recruitment and accelerates removal of pro-inflammatory myeloid cells, promoting tissue repair.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Almanzar, N. et al. Vagal TRPV1+ sensory neurons protect against influenza virus infection by regulating lung myeloid cell dynamics. Sci. Immunol. 10, eads6243 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Hiroki, C. H. et al. Nociceptor neurons suppress alveolar macrophage-induced Siglec-F+ neutrophil-mediated inflammation to protect against pulmonary fibrosis. Immunity 58, 2054–2068.e6 (2025). This study shows that vagal TRPV1+ nociceptors protect against experimental pulmonary fibrosis by restraining alveolar macrophage-derived VIP. Loss of TRPV1+ nociceptors results in increased macrophage-derived VIP and downstream induction of TGFβ1-mediated recruitment of pro-inflammatory neutrophils and neutrophil extracellular trap formation.

Article 
CAS 
PubMed 

Google Scholar
 

Li, W. et al. A brain-to-lung signal from GABAergic neurons to ADRB2+ interstitial macrophages promotes pulmonary inflammatory responses. Immunity 58, 2069–2085.e9 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Gieseck, R. L., Wilson, M. S. & Wynn, T. A. Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 18, 62–76 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Zhang, J. et al. Neuropilin-1 mediates lung tissue-specific control of ILC2 function in type 2 immunity. Nat. Immunol. 23, 237–250 (2022).

Article 
PubMed 

Google Scholar
 

Otaki, N. et al. Activation of ILC2s through constitutive IFNγ signaling reduction leads to spontaneous pulmonary fibrosis. Nat. Commun. 14, 8120 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cui, G. et al. CD45 alleviates airway inflammation and lung fibrosis by limiting expansion and activation of ILC2s. Proc. Natl Acad. Sci. USA 120, e2215941120 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nakatsuka, Y. et al. Profibrotic function of pulmonary group 2 innate lymphoid cells is controlled by regnase-1. Eur. Respir. J. 57, 2000018 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Dahlgren, M. W. et al. Adventitial stromal cells define group 2 innate lymphoid cell tissue niches. Immunity 50, 707–722.e6 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cautivo, K. M. et al. Interferon gamma constrains type 2 lymphocyte niche boundaries during mixed inflammation. Immunity 55, 254–271.e7 (2022). This study shows that, in type 2 immune responses, ILC2s migrate to de novo parenchymal sites near alveoli via IL-33-induced upregulation of trafficking-associated S1P receptors.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

He, Y. et al. Mechanics-activated fibroblasts promote pulmonary group 2 innate lymphoid cell plasticity propelling silicosis progression. Nat. Commun. 15, 9770 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jowett, G. M. et al. ILC1 drive intestinal epithelial and matrix remodelling. Nat. Mater. 20, 250–259 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Geng, Y. et al. PD-L1 on invasive fibroblasts drives fibrosis in a humanized model of idiopathic pulmonary fibrosis. JCI Insight 4, e125326 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Cui, L. et al. Activation of JUN in fibroblasts promotes pro-fibrotic programme and modulates protective immunity. Nat. Commun. 11, 2795 (2020). This work demonstrates an exhausted-like phenotype in CD8+ T cells in explanted lung tissue from patients with IPF.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wernig, G. et al. Unifying mechanism for different fibrotic diseases. Proc. Natl Acad. Sci. USA 114, 4757–4762 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Celada, L. J. et al. PD-1 up-regulation on CD4+ T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production. Sci. Transl. Med. 10, eaar8356 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yadav, S. et al. Reactivation of CTLA4-expressing T cells accelerates resolution of lung fibrosis in a humanized mouse model. J. Clin. Investig. 135, e181775 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Martin, O. P. et al. Single-cell atlas of human liver and blood immune cells across fatty liver disease stages reveals distinct signatures linked to liver dysfunction and fibrogenesis. Nat. Immunol. 26, 1596–1611 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pfister, D. et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 592, 450–456 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Krishnamurty, A. T. et al. LRRC15+ myofibroblasts dictate the stromal setpoint to suppress tumour immunity. Nature 611, 148–154 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sato, Y., Silina, K., van den Broek, M., Hirahara, K. & Yanagita, M. The roles of tertiary lymphoid structures in chronic diseases. Nat. Rev. Nephrol. 19, 525–537 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sato, Y. et al. Heterogeneous fibroblasts underlie age-dependent tertiary lymphoid tissues in the kidney. JCI Insight 1, e87680 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Nayar, S. et al. Immunofibroblasts are pivotal drivers of tertiary lymphoid structure formation and local pathology. Proc. Natl Acad. Sci. USA 116, 13490–13497 (2019). This work demonstrates that perivascular fibroblasts acquire features of FRCs, including expression of the homeostatic cytokines CCL21, CCL19 and CXCL13, and depend on lymphotoxin-β signalling between stromal and immune cells.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Denton, A. E. et al. Type I interferon induces CXCL13 to support ectopic germinal center formation. J. Exp. Med. 216, 621–637 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jacquelot, N., Tellier, J., Nutt, S. l. & Belz, G. T. Tertiary lymphoid structures and B lymphocytes in cancer prognosis and response to immunotherapies. Oncoimmunology 10, 1900508 (2021).

Article 

Google Scholar
 

Farr, A. G. et al. Characterization and cloning of a novel glycoprotein expressed by stromal cells in T-dependent areas of peripheral lymphoid tissues. J. Exp. Med. 176, 1477–1482 (1992).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kratz, A., Campos-Neto, A., Hanson, M. S. & Ruddle, N. H. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J. Exp. Med. 183, 1461–1472 (1996).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kamiya, M. et al. Immune mechanisms in fibrotic interstitial lung disease. Cell 187, 3506–3530 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Taillé, C. et al. Identification of periplakin as a new target for autoreactivity in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 183, 759–766 (2011).

Article 
PubMed 

Google Scholar
 

Koether, K. et al. Autoantibodies are associated with disease progression in idiopathic pulmonary fibrosis. Eur. Respir. J. 61, 2102381 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Ganeshan, K. & Chawla, A. Metabolic regulation of immune responses. Annu. Rev. Immunol. 32, 609–634 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Selvarajah, B., Azuelos, I., Anastasiou, D. & Chambers, R. C. Fibrometabolism — an emerging therapeutic frontier in pulmonary fibrosis. Sci. Signal. 14, eaay1027 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Noom, A., Sawitzki, B., Knaus, P. & Duda, G. N. A two-way street — cellular metabolism and myofibroblast contraction. npj Regen. Med. 9, 15 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xie, N. et al. Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am. J. Respir. Crit. Care Med. 192, 1462–1474 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Selvarajah, B. et al. mTORC1 amplifies the ATF4-dependent de novo serine–glycine pathway to supply glycine during TGF-β(1)-induced collagen biosynthesis. Sci. Signal. 12, eaav3048 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Andrianifahanana, M. et al. Profibrotic up-regulation of glucose transporter 1 by TGF-β involves activation of MEK and mammalian target of rapamycin complex 2 pathways. FASEB J. 30, 3733–3744 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kottmann, R. M. et al. Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-β. Am. J. Respir. Crit. Care Med. 186, 740–751 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nigdelioglu, R. et al. Transforming growth factor (TGF)-β promotes de novo serine synthesis for collagen production. J. Biol. Chem. 291, 27239–27251 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ge, J. et al. Glutaminolysis promotes collagen translation and stability via α-ketoglutarate-mediated mTOR activation and proline hydroxylation. Am. J. Respir. Cell Mol. Biol. 58, 378–390 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bai, L. et al. Glutaminolysis epigenetically regulates antiapoptotic gene expression in idiopathic pulmonary fibrosis fibroblasts. Am. J. Respir. Cell Mol. Biol. 60, 49–57 (2019). This paper shows that glutamine metabolism promotes resistance to apoptosis in IPF fibroblasts via epigenetic reprogramming.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mamazhakypov, A., Schermuly, R. T., Schaefer, L. & Wygrecka, M. Lipids — two sides of the same coin in lung fibrosis. Cell Signal. 60, 65–80 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Sosulski, M. L. et al. Deregulation of selective autophagy during aging and pulmonary fibrosis: the role of TGFβ1. Aging Cell 14, 774–783 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Robinson, C. M., Neary, R., Levendale, A., Watson, C. J. & Baugh, J. A. Hypoxia-induced DNA hypermethylation in human pulmonary fibroblasts is associated with Thy-1 promoter methylation and the development of a pro-fibrotic phenotype. Respir. Res. 13, 74 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Senavirathna, L. K. et al. Hypoxia induces pulmonary fibroblast proliferation through NFAT signaling. Sci. Rep. 8, 2709 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Taylor, C. T., Doherty, G., Fallon, P. G. & Cummins, E. P. Hypoxia-dependent regulation of inflammatory pathways in immune cells. J. Clin. Invest. 126, 3716–3724 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mirchandani, A. S., Sanchez-Garcia, M. A. & Walmsley, S. R. How oxygenation shapes immune responses: emerging roles for physioxia and pathological hypoxia. Nat. Rev. Immunol. 25, 161–177 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Mirchandani, A. S. et al. Hypoxia shapes the immune landscape in lung injury and promotes the persistence of inflammation. Nat. Immunol. 23, 927–939 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Santos, A. & Lagares, D. Matrix stiffness: the conductor of organ fibrosis. Curr. Rheumatol. Rep. 20, 2 (2018).

Article 
PubMed 

Google Scholar
 

Parker, M. W. et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J. Clin. Invest. 124, 1622–1635 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, F. et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190, 693–706 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Herrera, J., Henke, C. A. & Bitterman, P. B. Extracellular matrix as a driver of progressive fibrosis. J. Clin. Investig. 128, 45–53 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Walker, C. J. et al. Nuclear mechanosensing drives chromatin remodelling in persistently activated fibroblasts. Nat. Biomed. Eng. 5, 1485–1499 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Novak, C. M., Wheat, J. S., Ghadiali, S. N. & Ballinger, M. N. Mechanomemory of pulmonary fibroblasts demonstrates reversibility of transcriptomics and contraction phenotypes. Biomaterials 314, 122830 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Balestrini, J. L., Chaudhry, S., Sarrazy, V., Koehler, A. & Hinz, B. The mechanical memory of lung myofibroblasts. Integr. Biol. 4, 410–421 (2012).

Article 
CAS 

Google Scholar
 

Wong, V. W. et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat. Med. 18, 148–152 (2012). Data from this study suggest that physical force modulates wound healing and fibrosis via paracrine fibroblast–macrophage crosstalk, implicating a direct link between mechanobiology and inflammation during wound healing.

Article 
CAS 

Google Scholar
 

Du, H. et al. Tuning immunity through tissue mechanotransduction. Nat. Rev. Immunol. 23, 174–188 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Huse, M. Mechanical forces in the immune system. Nat. Rev. Immunol. 17, 679–690 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Atcha, H. et al. Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing. Nat. Commun. 12, 3256 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Meli, V. S. et al. YAP-mediated mechanotransduction tunes the macrophage inflammatory response. Sci. Adv. 6, eabb8471 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chakraborty, M. et al. Mechanical stiffness controls dendritic cell metabolism and function. Cell Rep. 34, 108609 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Solis, A. G. et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature 573, 69–74 (2019). This study shows that cyclical hydrostatic pressure initiates a pulmonary inflammatory response via the mechanically activated ion channel PIEZO1. These data illustrate how immune activation thresholds are modulated by the mechanical properties of the lungs.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Saitakis, M. et al. Different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity. eLife 6, e23190 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Meng, K. P., Majedi, F. S., Thauland, T. J. & Butte, M. J. Mechanosensing through YAP controls T cell activation and metabolism. J. Exp. Med. 217, e20200053 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Shaheen, S. et al. Substrate stiffness governs the initiation of B cell activation by the concerted signaling of PKCβ and focal adhesion kinase. eLife 6, e23060 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sutherland, T. E., Dyer, D. P. & Allen, J. E. The extracellular matrix and the immune system: a mutually dependent relationship. Science 379, eabp8964 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Penkala, I. J. et al. Age-dependent alveolar epithelial plasticity orchestrates lung homeostasis and regeneration. Cell Stem Cell 28, 1775–1789.e5 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shiraishi, K. et al. Biophysical forces mediated by respiration maintain lung alveolar epithelial cell fate. Cell 186, 1478–1492.e15 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wu, H. et al. Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells. Cell 180, 107–121.e17 (2020). In this study, the authors describe a direct mechanistic link among impaired AT2 cell regeneration, increased mechanical tension and a subpleural-to-central pattern of progressive pulmonary fibrosis.

Article 
CAS 
PubMed 

Google Scholar
 

Liu, Z. et al. MAPK-mediated YAP activation controls mechanical-tension-induced pulmonary alveolar regeneration. Cell Rep. 16, 1810–1819 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Kobayashi, Y. et al. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat. Cell Biol. 22, 934–946 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Enomoto, Y. et al. Autocrine TGF-β-positive feedback in profibrotic AT2-lineage cells plays a crucial role in non-inflammatory lung fibrogenesis. Nat. Commun. 14, 4956 (2023). This paper shows that bleomycin induces AT2 cells to enter an intermediate transition state enriched for SASP-related factors including TGFβ. This establishes TGFβ-mediated autocrine feedback loops and drives myofibroblast activation.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hoffman, E. T. et al. Aberrant intermediate alveolar epithelial cells promote pathogenic activation of lung fibroblasts in preclinical fibrosis models. Nat. Commun. 16, 8710 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Martinez, F. J. et al. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Primers 3, 17074 (2017).

Article 
PubMed 

Google Scholar
 

Moss, B. J., Ryter, S. W. & Rosas, I. O. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu. Rev. Pathol. 17, 515–546 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Farhat, A. et al. An aging bone marrow exacerbates lung fibrosis by fueling profibrotic macrophage persistence. Sci. Immunol. 10, eadk5041 (2025). Bone marrow transplantation from aged donors reveals a role for the aged haematopoietic compartment in promoting persistent profibrotic macrophage populations and exacerbating fibrosis.

Article 
CAS 
PubMed 

Google Scholar
 

Sano, S. et al. Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure mortality. Science 377, 292–297 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mann, M. et al. Heterogeneous responses of hematopoietic stem cells to inflammatory stimuli are altered with age. Cell Rep. 25, 2992–3005.e5 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Niec, R. E., Rudensky, A. Y. & Fuchs, E. Inflammatory adaptation in barrier tissues. Cell 184, 3361–3375 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Netea, M. G., Quintin, J. & van der Meer, J. W. M. Trained immunity: a memory for innate host defense. Cell Host Microbe 9, 355–361 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550, 475–480 (2017). This study expands the concept of trained immunity to epithelial stem cells, demonstrating that prior inflammation enhances epithelial responsivity after wounding.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Frišcic, J. et al. The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts. Immunity 54, 1002–1021.e10 (2021). This study shows that synovial fibroblasts display elements of inflammatory ‘memory-like’ responses in vivo using adoptive transfer models.

Article 
PubMed 

Google Scholar
 

Bian, X. et al. Epigenetic memory of radiotherapy in dermal fibroblasts impairs wound repair capacity in cancer survivors. Nat. Commun. 15, 9286 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Larsen, S. B. et al. Establishment, maintenance, and recall of inflammatory memory. Cell Stem Cell 28, 1758–1774.e8 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Falvo, D. J. et al. A reversible epigenetic memory of inflammatory injury controls lineage plasticity and tumor initiation in the mouse pancreas. Dev. Cell 58, 2959–2973.e7 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Del Poggetto, E. et al. Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science 373, eabj0486 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Levra Levron, C. et al. Tissue memory relies on stem cell priming in distal undamaged areas. Nat. Cell Biol. 25, 740–753 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Crowley, T., Buckley, C. D. & Clark, A. R. Stroma: the forgotten cells of innate immune memory. Clin. Exp. Immunol. 193, 24–36 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sohn, C. et al. Prolonged tumor necrosis factor α primes fibroblast-like synoviocytes in a gene-specific manner by altering chromatin. Arthritis Rheumatol. 67, 86–95 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Klein, K. et al. The epigenetic architecture at gene promoters determines cell type-specific LPS tolerance. J. Autoimmun. 83, 122–133 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Kamada, R. et al. Interferon stimulation creates chromatin marks and establishes transcriptional memory. Proc. Natl Acad. Sci. USA 115, E9162–E9171 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Álvarez, D. et al. IPF lung fibroblasts have a senescent phenotype. Am. J. Physiol. Lung Cell Mol. Physiol. 313, L1164–l1173 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Schafer, M. J. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8, 14532 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schuliga, M. et al. Mitochondrial dysfunction contributes to the senescent phenotype of IPF lung fibroblasts. J. Cell. Mol. Med. 22, 5847–5861 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, Y. et al. Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. J. Clin. Investig. 123, 1096–1108 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lagares, D. et al. Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci. Transl. Med. 9, eaal3765 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cooley, J. C. et al. Inhibition of antiapoptotic BCL-2 proteins with ABT-263 induces fibroblast apoptosis, reversing persistent pulmonary fibrosis. JCI Insight 8, e163762 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bühling, F. et al. Altered expression of membrane-bound and soluble CD95/Fas contributes to the resistance of fibrotic lung fibroblasts to FasL induced apoptosis. Respir. Res. 6, 37 (2005).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Im, J., Kim, K., Hergert, P. & Nho, R. S. Idiopathic pulmonary fibrosis fibroblasts become resistant to Fas ligand-dependent apoptosis via the alteration of decoy receptor 3. J. Pathol. 240, 25–37 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, T.-W. et al. Blocking PD-L1–PD-1 improves senescence surveillance and ageing phenotypes. Nature 611, 358–364 (2022). This study demonstrates that CD8+ T cells are involved in cytotoxicity against senescent fibroblasts and that PDL1 expression in senescent cells results in escape from T cell immunity.

Article 
CAS 
PubMed 

Google Scholar
 

Pereira, B. I. et al. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nat. Commun. 10, 2387 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Naik, S. & Fuchs, E. Inflammatory memory and tissue adaptation in sickness and in health. Nature 607, 249–255 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Reyes, N. S. et al. Sentinel p16(INK4a+) cells in the basement membrane form a reparative niche in the lung. Science 378, 192–201 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ritschka, B. et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 31, 172–183 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Aghajanian, H. et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sobecki, M. et al. Vaccination-based immunotherapy to target profibrotic cells in liver and lung. Cell Stem Cell 29, 1459–1474.e9 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Nabhan, A. N. et al. Targeted alveolar regeneration with frizzled-specific agonists. Cell 186, 2995–3012.e15 (2023).

Article 
PubMed 

Google Scholar
 

Liakouli, V., Ciancio, A., Del Galdo, F., Giacomelli, R. & Ciccia, F. Systemic sclerosis interstitial lung disease: unmet needs and potential solutions. Nat. Rev. Rheumatol. 20, 21–32 (2024).

Article 
PubMed 

Google Scholar
 

Shaw, M., Collins, B. F., Ho, L. A. & Raghu, G. Rheumatoid arthritis-associated lung disease. Eur. Respir. Rev. 24, 1–16 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Grunewald, J. et al. Sarcoidosis. Nat. Rev. Dis. Primers 5, 45 (2019).

Article 
PubMed 

Google Scholar
 

Barnes, H. et al. Diagnosis and management of hypersensitivity pneumonitis in adults: a position statement from the Thoracic Society of Australia and New Zealand. Respirology 29, 1023–1046 (2024).

Article 
PubMed 

Google Scholar
 

Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Krausgruber, T. et al. Structural cells are key regulators of organ-specific immune responses. Nature 583, 296–302 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Muhl, L. et al. Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat. Commun. 11, 3953 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Elmentaite, R., Domínguez Conde, C., Yang, L. & Teichmann, S. A. Single-cell atlases: shared and tissue-specific cell types across human organs. Nat. Rev. Genet. 23, 395–410 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Tsukui, T. & Sheppard, D. Stromal heterogeneity in the adult lung delineated by single-cell genomics. Am. J. Physiol. Cell Physiol. 328, C1964–C1972 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Madissoon, E. et al. A spatially resolved atlas of the human lung characterizes a gland-associated immune niche. Nat. Genet. 55, 66–77 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Basil, M. C. & Morrisey, E. E. Lung regeneration: a tale of mice and men. Semin. Cell Dev. Biol. 100, 88–100 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Jenkins, R. G. et al. An official American Thoracic Society Workshop report: use of animal models for the preclinical assessment of potential therapies for pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 56, 667–679 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Naikawadi, R. P. et al. Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis. JCI Insight 1, e86704 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Povedano, J. M., Martinez, P., Flores, J. M., Mulero, F. & Blasco, M. A. Mice with pulmonary fibrosis driven by telomere dysfunction. Cell Rep. 12, 286–299 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Yao, C. et al. Senescence of alveolar type 2 cells drives progressive pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 203, 707–717 (2020).

Article 

Google Scholar
 

Redente, E. F. et al. Loss of Fas signaling in fibroblasts impairs homeostatic fibrosis resolution and promotes persistent pulmonary fibrosis. JCI Insight 6, e141618 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wendisch, D. et al. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell 184, 6243–6261.e27 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar