Sender, R. et al. The total mass, number, and distribution of immune cells in the human body. Proc. Natl Acad. Sci. USA 120, e2308511120 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Walford, R. L. The immunologic theory of aging. Gerontologist 4, 195–197 (1964).

Article 
CAS 
PubMed 

Google Scholar
 

Effros, R. B. Roy Walford and the immunologic theory of aging. Immun. Ageing 2, 7 (2005).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yousefzadeh, M. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105 (2021). This article highlights a causal link between immune ageing and systemic ageing by utilizing an immune cell-specific DNA damage mouse model (Vav-iCre+/−;Ercc1−/fl).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Svensson, E. C. et al. TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol. 7, 521–528 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Desdín-Micó, G. et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 368, 1371–1376 (2020). This article demonstrates that mitochondria dysfunction in T cells has a critical role in driving multiple age-related pathologies, potentially through reduced NAD+ levels.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Iborra-Pernichi, M. et al. Defective mitochondria remodelling in B cells leads to an aged immune response. Nat. Commun. 15, 2569 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, Z. et al. Immunosenescence: molecular mechanisms and diseases. Signal. Transduct. Target. Ther. 8, 200 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nikolich-Žugich, J., Li, G., Uhrlaub, J. L., Renkema, K. R. & Smithey, M. J. Age-related changes in CD8 T cell homeostasis and immunity to infection. Semin. Immunol. 24, 356–364 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mogilenko, D. A., Shchukina, I. & Artyomov, M. N. Immune ageing at single-cell resolution. Nat. Rev. Immunol. 22, 484–498 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Sayed, N. et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat. Aging 1, 598–615 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Alpert, A. et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat. Med. 25, 487–495 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, W. et al. Single-cell immune aging clocks reveal inter-individual heterogeneity during infection and vaccination. Nat. Aging 5, 607–621 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ding, Y. et al. Comprehensive human proteome profiles across a 50-year lifespan reveal aging trajectories and signatures. Cell 188, 5763–5784.e26 (2025). This article provides a comprehensive overview and resource of proteome profiles across human organs during ageing.

Article 
CAS 
PubMed 

Google Scholar
 

Park, M. D. et al. Hematopoietic aging promotes cancer by fueling IL-1α-driven emergency myelopoiesis. Science 386, eadn0327 (2024). This article highlights how IL-1α-driven myelopoiesis contributes to the failure to control lung cancer progression with age.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rettkowski, J. et al. Modulation of bone marrow haematopoietic stem cell activity as a therapeutic strategy after myocardial infarction: a preclinical study. Nat. Cell Biol. 27, 591–604 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, Y. et al. Reducing functionally defective old HSCs alleviates aging-related phenotypes in old recipient mice. Cell Res. 35, 45–58 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ross, J. B. et al. Depleting myeloid-biased haematopoietic stem cells rejuvenates aged immunity. Nature 628, 162–170 (2024). This article identifies a CD150high HSC population that drives myeloid-biased output from bone marrow, compromising the quality of adaptive immune response in ageing.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Morganti, C. & Ito, K. Mitochondrial contributions to hematopoietic stem cell aging. Int. J. Mol. Sci. 22, 11117 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Brown, K. et al. SIRT3 reverses aging-associated degeneration. Cell Rep. 3, 319–327 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Girotra, M. et al. Induction of mitochondrial recycling reverts age-associated decline of the hematopoietic and immune systems. Nat. Aging 3, 1057–1066 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Dorshkind, K., Höfer, T., Montecino-Rodriguez, E., Pioli, P. D. & Rodewald, H. R. Do haematopoietic stem cells age? Nat. Rev. Immunol. 20, 196–202 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Elias, H. K. et al. Kitlo hematopoietic stem cells exhibit distinct lymphoid-primed chromatin landscapes that enhance thymic reconstitution. Nat. Commun. 16, 6170 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sun, N. et al. Clusterin drives myeloid bias in aged hematopoietic stem cells by regulating mitochondrial function. Nat. Aging 5, 1510–1527 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, eaan4673 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, H. et al. Clonal hematopoiesis driven by mutated DNMT3A promotes inflammatory bone loss. Cell 187, 3690–3711.e19 (2024). This article reports the detrimental effect of DNMT3A-driven clonal haematopoiesis on periodontitis and demonstrates that rapapmycin can reverse periodontitis-associated pathologies.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Garagnani, P. et al. Whole-genome sequencing analysis of semi-supercentenarians. eLife 10, e57849 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bouzid, H. et al. Clonal hematopoiesis is associated with protection from Alzheimer’s disease. Nat. Med. 29, 1662–1670 (2023). This article describes a negative association between clonal haematopoiesis and Alzheimer disease, potentially mediated by alterations in the microglial pool.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Matatall, K. A. et al. TET2-mutant myeloid cells mitigate Alzheimer’s disease progression via CNS infiltration and enhanced phagocytosis in mice. Cell Stem Cell 32, 1285–1298.e8 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kapadia, C. D. et al. Clonal dynamics and somatic evolution of haematopoiesis in mouse. Nature 641, 681–689 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ambrosi, T. H. et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20, 771–784.e6 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Toghani, D. et al. Niche-derived Semaphorin 4A safeguards functional identity of myeloid-biased hematopoietic stem cells. Nat. Aging 5, 558–575 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pioli, P. D., Casero, D., Montecino-Rodriguez, E., Morrison, S. L. & Dorshkind, K. Plasma cells are obligate effectors of enhanced myelopoiesis in aging bone marrow. Immunity 51, 351–366.e6 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ambrosi, T. H. et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 597, 256–262 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mittelbrunn, M. & Kroemer, G. Hallmarks of T cell aging. Nat. Immunol. 22, 687–698 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Han, S., Georgiev, P., Ringel, A. E., Sharpe, A. H. & Haigis, M. C. Age-associated remodeling of T cell immunity and metabolism. Cell Metab. 35, 36–55 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Goronzy, J. J. & Weyand, C. M. Mechanisms underlying T cell ageing. Nat. Rev. Immunol. 19, 573–583 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Frasca, D., Diaz, A., Romero, M., Garcia, D. & Blomberg, B. B. B cell immunosenescence. Annu. Rev. Cell Dev. Biol. 36, 551–574 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Valentino, T. R. et al. The role of autoantibodies in bridging obesity, aging, and immunosenescence. Immun. Ageing 21, 85 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cancro, M. P. Age-associated B cells. Annu. Rev. Immunol. 38, 315–340 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Zhang, H. et al. Aging-associated HELIOS deficiency in naive CD4. Nat. Immunol. 24, 96–109 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Castro, J. P. et al. Age-associated clonal B cells drive B cell lymphoma in mice. Nat. Aging 4, 1403–1417 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Ovadya, Y. et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 9, 5435 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, T. W. et al. Blocking PD-L1-PD-1 improves senescence surveillance and ageing phenotypes. Nature 611, 358–364 (2022). This article demonstrates that the age-related decline in immunosurveilance promotes the accumulation of senescent cells and highlights the therapeutic potential of immunotherapy to restore immune function and alleviate systemic ageing.

Article 
CAS 
PubMed 

Google Scholar
 

Dahlquist, K. J. V. et al. PD1 blockade improves survival and CD8. Nat. Aging 4, 915–925 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Elyahu, Y. et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci. Adv. 5, eaaw8330 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zukowski, E. et al. STAT3 modulates CD4. Aging Cell 22, e13996 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Callender, L. A. et al. Mitochondrial mass governs the extent of human T cell senescence. Aging Cell 19, e13067 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Zhang, H. et al. PREX1 improves homeostatic proliferation to maintain a naive CD4+ T cell compartment in older age. JCI Insight 9, e172848 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Jin, J. et al. CISH impairs lysosomal function in activated T cells resulting in mitochondrial DNA release and inflammaging. Nat. Aging 3, 600–616 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Headley, C. A. et al. Extracellular delivery of functional mitochondria rescues the dysfunction of CD4. Adv. Sci. 11, e2303664 (2024).

Article 

Google Scholar
 

Quinn, K. M. et al. Age-related decline in primary CD8. Cell Rep. 23, 3512–3524 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Quinn, K. M., Vicencio, D. M. & La Gruta, N. L. The paradox of aging: aging-related shifts in T cell function and metabolism. Semin. Immunol. 70, 101834 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Terekhova, M. et al. Single-cell atlas of healthy human blood unveils age-related loss of NKG2C. Immunity 57, 188–192 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Lan, F. et al. GZMK-expressing CD8. Nature 638, 490–498 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pei, S. et al. Age-related decline in CD8. Nat. Aging 4, 1828–1844 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Camell, C. D. et al. Aging induces an Nlrp3 inflammasome-dependent expansion of adipose B cells that impairs metabolic homeostasis. Cell Metab. 30, 1024–1039.e6 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Souyris, M. et al. escapes X chromosome inactivation in immune cells. Sci. Immunol. 3, eaap8855 (2018).

Article 
PubMed 

Google Scholar
 

Luo, Y. et al. Single-cell genomics identifies distinct B1 cell developmental pathways and reveals aging-related changes in the B-cell receptor repertoire. Cell Biosci. 12, 57 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Marín-Aguilar, F. et al. NLRP3 inflammasome inhibition by MCC950 in aged mice improves health via enhanced autophagy and PPARα activity. J. Gerontol. A Biol. Sci. Med. Sci 75, 1457–1464 (2020).

Article 
PubMed 

Google Scholar
 

Oishi, Y. & Manabe, I. Macrophages in age-related chronic inflammatory diseases. npj Aging Mech. Dis. 2, 16018 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Millet, A., Ledo, J. H. & Tavazoie, S. F. An exhausted-like microglial population accumulates in aged and APOE4 genotype Alzheimer’s brains. Immunity 57, 153–170.e6 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Hu, H. et al. Defective efferocytosis by aged macrophages promotes STING signaling mediated inflammatory liver injury. Cell Death Discov. 9, 236 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Blacher, E. et al. Aging disrupts circadian gene regulation and function in macrophages. Nat. Immunol. 23, 229–236 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Ryu, S. et al. The matricellular protein SPARC induces inflammatory interferon-response in macrophages during aging. Immunity 55, 1609–1626.e7 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hou, J. et al. Aged bone marrow macrophages drive systemic aging and age-related dysfunction via extracellular vesicle-mediated induction of paracrine senescence. Nat. Aging 4, 1562–1581 (2024). This article introduces a critical concept of paracrine senescence driven by aged macrophages, highlighting their contribution to systemic ageing.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nogueira-Recalde, U. et al. Fibrates as drugs with senolytic and autophagic activity for osteoarthritis therapy. EBioMedicine 45, 588–605 (2019). This article establishes the concept of paracrine senescence driven by immunoglobulin, contributing to systemic ageing.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ma, S. et al. Spatial transcriptomic landscape unveils immunoglobin-associated senescence as a hallmark of aging. Cell 187, 7025–7044.e34 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Sawaki, D. et al. Osteopontin promotes age-related adipose tissue remodeling through senescence-associated macrophage dysfunction. JCI Insight 8, e145811 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sawaki, D. et al. Visceral adipose tissue drives cardiac aging through modulation of fibroblast senescence by osteopontin production. Circulation 138, 809–822 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Zhou, Z. et al. Type 2 cytokine signaling in macrophages protects from cellular senescence and organismal aging. Immunity 57, 513–527.e6 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Zhang, D. et al. Neutrophil ageing is regulated by the microbiome. Nature 525, 528–532 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Van Avondt, K. et al. Neutrophils in aging and aging-related pathologies. Immunol. Rev. 314, 357–375 (2023).

Article 
PubMed 

Google Scholar
 

Barkaway, A. et al. Age-related changes in the local milieu of inflamed tissues cause aberrant neutrophil trafficking and subsequent remote organ damage. Immunity 54, 1494–1510.e7 (2021). This article highlights that neutrophils, which are relatively understudied innate immune cells in the context of ageing, drive remote tissue inflammation via their re-entry into the circulation.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lu, R. J. et al. Multi-omic profiling of primary mouse neutrophils predicts a pattern of sex and age-related functional regulation. Nat. Aging 1, 715–733 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Brauning, A. et al. Aging of the immune system: focus on natural killer cells phenotype and functions. Cells 11, 1017 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shehata, H. M., Hoebe, K. & Chougnet, C. A. The aged nonhematopoietic environment impairs natural killer cell maturation and function. Aging Cell 14, 191–199 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Almeida-Oliveira, A. et al. Age-related changes in natural killer cell receptors from childhood through old age. Hum. Immunol. 72, 319–329 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Gounder, S. S. et al. Effect of aging on NK cell population and their proliferation at ex vivo culture condition. Anal. Cell Pathol. 2018, 7871814 (2018).

Article 

Google Scholar
 

D’Souza, S. S. et al. Compartmentalized effects of aging on group 2 innate lymphoid cell development and function. Aging Cell 18, e13019 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Goldberg, E. L. et al. IL-33 causes thermogenic failure in aging by expanding dysfunctional adipose ILC2. Cell Metab. 33, 2277–2287.e5 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fung, I. T. H. et al. Activation of group 2 innate lymphoid cells alleviates aging-associated cognitive decline. J. Exp. Med. 217, e20190915 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gray, J. I. et al. Human γδ T cells in diverse tissues exhibit site-specific maturation dynamics across the life span. Sci. Immunol. 9, eadn3954 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bruno, M. E. C. et al. Accumulation of γδ T cells in visceral fat with aging promotes chronic inflammation. Geroscience 44, 1761–1778 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Faust, H. J. et al. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis. J. Clin. Invest. 130, 5493–5507 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mukherjee, S. et al. Mechanisms of γδ T cell accumulation in visceral adipose tissue with aging. Front. Aging 4, 1258836 (2023).

Article 
PubMed 

Google Scholar
 

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

Article 
PubMed 

Google Scholar
 

Kroemer, G. et al. From geroscience to precision geromedicine: understanding and managing aging. Cell 188, 2043–2062 (2025). Recent developments in geroscience are discussed, and extracellular matrix alterations are introduced as a new hallmark of ageing in this paper.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pieren, D. K. J. et al. Compromised DNA repair promotes the accumulation of regulatory T cells with an aging-related phenotype and responsiveness. Front. Aging 2, 667193 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rossiello, F., Jurk, D., Passos, J. F. & d’Adda di Fagagna, F. Telomere dysfunction in ageing and age-related diseases. Nat. Cell Biol. 24, 135–147 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Najarro, K. et al. Telomere length as an indicator of the robustness of B- and T-cell response to influenza in older adults. J. Infect. Dis. 212, 1261–1269 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kang, Y. et al. Telomere dysfunction disturbs macrophage mitochondrial metabolism and the NLRP3 inflammasome through the PGC-1α/TNFAIP3 axis. Cell Rep. 22, 3493–3506 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Vukmanovic-Stejic, M. et al. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J. Clin. Invest. 116, 2423–2433 (2006).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lanna, A. et al. An intercellular transfer of telomeres rescues T cells from senescence and promotes long-term immunological memory. Nat. Cell Biol. 24, 1461–1474 (2022). This article discusses the potential implications of impaired intercellular telomere transfer in driving immune and systemic ageing.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Amorim, J. A. et al. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat. Rev. Endocrinol. 18, 243–258 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zong, Y. et al. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal. Transduct. Target. Ther. 9, 124 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wculek, S. K. et al. Oxidative phosphorylation selectively orchestrates tissue macrophage homeostasis. Immunity 56, 516–530.e9 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Seegren, P. V. et al. Reduced mitochondrial calcium uptake in macrophages is a major driver of inflammaging. Nat. Aging 3, 796–812 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Victorelli, S. et al. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature 622, 627–636 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, K. et al. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal. Transduct. Target. Ther. 7, 374 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kusters, C. D. J. & Horvath, S. Quantification of epigenetic aging in public health. Annu. Rev. Public Health 46, 91–110 (2025).

Article 
PubMed 

Google Scholar
 

Márquez, E. J. et al. Sexual-dimorphism in human immune system aging. Nat. Commun. 11, 751 (2020). This article highlights age-related epigenetic alterations in immune cells by characterizing peripheral blood mononuclear cells from 172 individuals and provides a resource to explore the impact of age and sex on immune phenotype.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Shchukina, I. et al. Enhanced epigenetic profiling of classical human monocytes reveals a specific signature of healthy aging in the DNA methylome. Nat. Aging 1, 124–141 (2021).

Article 
PubMed 

Google Scholar
 

Sano, S. et al. Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure mortality. Science 377, 292–297 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Horitani, K. et al. Disruption of the Uty epigenetic regulator locus in hematopoietic cells phenocopies the profibrotic attributes of Y chromosome loss in heart failure. Nat. Cardiovasc. Res. 3, 343–355 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Karakaslar, E. O. et al. Transcriptional activation of Jun and Fos members of the AP-1 complex is a conserved signature of immune aging that contributes to inflammaging. Aging Cell 22, e13792 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jang, I. H. et al. GDF3 promotes adipose tissue macrophage-mediated inflammation via altered chromatin accessibility during aging. Nat. Aging 6, 127–142 (2026).

Article 
CAS 
PubMed 

Google Scholar
 

Moss, C. E. et al. Aging-related defects in macrophage function are driven by MYC and USF1 transcriptional programs. Cell Rep. 43, 114073 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Arata, Y. et al. Defective induction of the proteasome associated with T-cell receptor signaling underlies T-cell senescence. Genes Cell 24, 801–813 (2019).

Article 
CAS 

Google Scholar
 

Aman, Y. et al. Autophagy in healthy aging and disease. Nat. Aging 1, 634–650 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, H. et al. Polyamines control eIF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence. Mol. Cell 76, 110–125.e9 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Alsaleh, G. et al. Autophagy in T cells from aged donors is maintained by spermidine and correlates with function and vaccine responses. eLife 9, e57950 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dellorusso, P. V. et al. Autophagy counters inflammation-driven glycolytic impairment in aging hematopoietic stem cells. Cell Stem Cell 31, 1020–1037.e9 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Consortium, T. M. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018). This article provides a comprehensive single-cell level resource detailling age-related changes in immune cells across 20 mouse organs.

Article 

Google Scholar
 

Camell, C. D. et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550, 119–123 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, Y. et al. Integrating single-cell RNA and T cell/B cell receptor sequencing with mass cytometry reveals dynamic trajectories of human peripheral immune cells from birth to old age. Nat. Immunol. 26, 308–322 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yadav, S., Deepika & Maurya, P. K. A systematic review of red blood cells biomarkers in human aging. J. Gerontol. A Biol. Sci. Med. Sci. 79, glae004 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Ningtyas, D. C. et al. Platelets mediate the clearance of senescent red blood cells by forming prophagocytic platelet-cell complexes. Blood 143, 535–547 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sage, P. T., Tan, C. L., Freeman, G. J., Haigis, M. & Sharpe, A. H. Defective TFH cell function and increased TFR cells contribute to defective antibody production in aging. Cell Rep. 12, 163–171 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stebegg, M. et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. eLife 9, e52473 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lee, J. L. et al. B cell-intrinsic changes with age do not impact antibody-secreting cell formation but delay B cell participation in the germinal centre reaction. Aging Cell 21, e13692 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ou, M. Y., Zhang, H., Tan, P. C., Zhou, S. B. & Li, Q. F. Adipose tissue aging: mechanisms and therapeutic implications. Cell Death Dis. 13, 300 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Carey, A. et al. B-cell interleukin 1 receptor 1 (IL1R1) modulates the female adipose tissue immune microenvironment during aging. J. Leukoc. Biol. 117, qiae219 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Carey, A. et al. Age-associated accumulation of B cells promotes macrophage inflammation and inhibits lipolysis in adipose tissue during sepsis. Cell Rep. 43, 113967 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yu, L. et al. IgG is an aging factor that drives adipose tissue fibrosis and metabolic decline. Cell Metab. 36, 793–807.e5 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chini, C. C. S. et al. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD. Nat. Metab. 2, 1284–1304 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Covarrubias, A. J. et al. Senescent cells promote tissue NAD. Nat. Metab. 2, 1265–1283 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Camacho-Pereira, J. et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 23, 1127–1139 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kalathookunnel Antony, A., Lian, Z. & Wu, H. T cells in adipose tissue in aging. Front. Immunol. 9, 2945 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Brigger, D. et al. Eosinophils regulate adipose tissue inflammation and sustain physical and immunological fitness in old age. Nat. Metab. 2, 688–702 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Feng, X. et al. Senescent immune cells accumulation promotes brown adipose tissue dysfunction during aging. Nat. Commun. 14, 3208 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stahl, E. C. et al. Inflammation and ectopic fat deposition in the aging murine liver is influenced by CCR2. Am. J. Pathol. 190, 372–387 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Lagnado, A. et al. Neutrophils induce paracrine telomere dysfunction and senescence in ROS-dependent manner. EMBO J. 40, e106048 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Du, K. et al. Aging promotes metabolic dysfunction-associated steatotic liver disease by inducing ferroptotic stress. Nat. Aging 4, 949–968 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Solá, P. et al. Targeting lymphoid-derived IL-17 signaling to delay skin aging. Nat. Aging 3, 688–704 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Han, J. et al. Age-associated senescent – T cell signaling promotes type 3 immunity that inhibits the biomaterial regenerative response. Adv. Mater. 36, e2310476 (2024).

Article 
PubMed 

Google Scholar
 

Allen, W. E., Blosser, T. R., Sullivan, Z. A., Dulac, C. & Zhuang, X. Molecular and spatial signatures of mouse brain aging at single-cell resolution. Cell 186, 194–208.e18 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Gulen, M. F. et al. cGAS-STING drives ageing-related inflammation and neurodegeneration. Nature 620, 374–380 (2023). This article demonstrates the potential of immunotheraphy through blockade of inflammatory pathways to mitigate age-related pathologies.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kang, S. et al. Microglia undergo sex-dimorphic transcriptional and metabolic rewiring during aging. J. Neuroinflammation 21, 150 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, X. et al. Rejuvenation of the aged brain immune cell landscape in mice through p16-positive senescent cell clearance. Nat. Commun. 13, 5671 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kang, L. et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat. Commun. 11, 2488 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zenaro, E. et al. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat. Med. 21, 880–886 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Gullotta, G. S. et al. Age-induced alterations of granulopoiesis generate atypical neutrophils that aggravate stroke pathology. Nat. Immunol. 24, 925–940 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

de la Fuente, A. G. et al. Ageing impairs the regenerative capacity of regulatory T cells in mouse central nervous system remyelination. Nat. Commun. 15, 1870 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jin, W. N. et al. Neuroblast senescence in the aged brain augments natural killer cell cytotoxicity leading to impaired neurogenesis and cognition. Nat. Neurosci. 24, 61–73 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Misharin, A. V. et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 214, 2387–2404 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Farhat, A. et al. An aging bone marrow exacerbates lung fibrosis by fueling profibrotic macrophage persistence. Sci. Immunol. 10, eadk5041 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

McQuattie-Pimentel, A. C. et al. The lung microenvironment shapes a dysfunctional response of alveolar macrophages in aging. J. Clin. Invest. 131, e140299 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Prieto, L. I. et al. Senescent alveolar macrophages promote early-stage lung tumorigenesis. Cancer Cell 41, 1261–1275.e6 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rasa, S. M. M. et al. Inflammaging is driven by upregulation of innate immune receptors and systemic interferon signaling and is ameliorated by dietary restriction. Cell Rep. 39, 111017 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Monzó, C. et al. Dietary restriction mitigates the age-associated decline in mouse B cell receptor repertoire diversity. Cell Rep. 42, 112722 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tao, S. et al. Long-term mid-onset dietary restriction rejuvenates hematopoietic stem cells and improves regeneration capacity of total bone marrow from aged mice. Aging Cell 19, e13241 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Papp, G. et al. Regular exercise may restore certain age-related alterations of adaptive immunity and rebalance immune regulation. Front. Immunol. 12, 639308 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Di Francesco, A. et al. Dietary restriction impacts health and lifespan of genetically diverse mice. Nature 634, 684–692 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kraus, W. E. et al. 2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, phase 2, randomised controlled trial. Lancet Diabetes Endocrinol. 7, 673–683 (2019). This article describes a randomized calorie restriction clinical trial that served as the basis for identifying multiple molecular mechanisms governing healthspan.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Spadaro, O. et al. Caloric restriction in humans reveals immunometabolic regulators of health span. Science 375, 671–677 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Youm, Y. H. et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ryu, S. et al. Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. eLife 10, e66522 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Goldberg, E. L. et al. β-Hydroxybutyrate deactivates neutrophil NLRP3 inflammasome to relieve gout flares. Cell Rep. 18, 2077–2087 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lee, A. H. & Dixit, V. D. Dietary regulation of immunity. Immunity 53, 510–523 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Newman, J. C. et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab. 26, 547–557.e8 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Conway, J. et al. Age-related loss of intestinal barrier integrity plays an integral role in thymic involution and T cell ageing. Aging Cell 24, e14401 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Thevaranjan, N. et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21, 455–466.e4 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bodogai, M. et al. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Sci. Transl. Med. 10, eaat4271 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020). This article demonstrates that immunotheraphy using CAR T cells to target uPAR-expressing senescent cells can mitigate age-related pathologies.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Amor, C. et al. Prophylactic and long-lasting efficacy of senolytic CAR T cells against age-related metabolic dysfunction. Nat. Aging 7, 336–349 (2024).

Article 

Google Scholar
 

Iltis, C. et al. A ganglioside-based immune checkpoint enables senescent cells to evade immunosurveillance during aging. Nat. Aging 5, 219–236 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Wang, T. W. & Nakanishi, M. Immune surveillance of senescence: potential application to age-related diseases. Trends Cell Biol. 35, 248–257 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Zhu, Y. et al. New agents that target senescent cells: the flavone, fisetin, and the BCL-X. Aging 9, 955–963 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yousefzadeh, M. J. et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 36, 18–28 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018). This article demonstrates the potential of senotherapeutics approaches to improve immune function and extend healthspan.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Camell, C. D. et al. Senolytics reduce coronavirus-related mortality in old mice. Science 373, eabe4832 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Farr, J. N. et al. Local senolysis in aged mice only partially replicates the benefits of systemic senolysis. J. Clin. Invest. 133, e162519 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

Article 
CAS 
PubMed 

Google Scholar
 

Ocampo, A. et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167, 1719–1733.e2 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lu, Y. et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 588, 124–129 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sarkar, T. J. et al. Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat. Commun. 11, 1545 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yang, J. H. et al. Chemically induced reprogramming to reverse cellular aging. Aging 15, 5966–5989 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Montecino-Rodriguez, E., Berent-Maoz, B. & Dorshkind, K. Causes, consequences, and reversal of immune system aging. J. Clin. Invest. 123, 958–965 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Duggal, N. A. Reversing the immune ageing clock: lifestyle modifications and pharmacological interventions. Biogerontology 19, 481–496 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Frisch, B. J. et al. Aged marrow macrophages expand platelet-biased hematopoietic stem cells via Interleukin1B. JCI Insight 5, e124213 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sutherland, T. E., Dyer, D. P. & Allen, J. E. The extracellular matrix and the immune system: a mutually dependent relationship. Science 379, eabp8964 (2023). This article discusses the reciprocal interactions between the extracellular matrix and the immune system, highlighting their potential implications in immune and systemic ageing.

Article 
CAS 
PubMed 

Google Scholar
 

Harper, E. I. & Weeraratna, A. T. A wrinkle in TIME: how changes in the aging ECM drive the remodeling of the tumor immune microenvironment. Cancer Discov. 13, 1973–1981 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gubbels Bupp, M. R., Potluri, T., Fink, A. L. & Klein, S. L. The confluence of sex hormones and aging on immunity. Front. Immunol. 9, 1269 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fairweather, D., Beetler, D. J., McCabe, E. J. & Lieberman, S. M. Mechanisms underlying sex differences in autoimmunity. J. Clin. Invest. 134, e180076 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dunn, S. E., Perry, W. A. & Klein, S. L. Mechanisms and consequences of sex differences in immune responses. Nat. Rev. Nephrol. 20, 37–55 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Zheng, Y., Liu, Q., Goronzy, J. J. & Weyand, C. M. Immune aging — a mechanism in autoimmune disease. Semin. Immunol. 69, 101814 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, Q., Zheng, Y., Goronzy, J. J. & Weyand, C. M. T cell aging as a risk factor for autoimmunity. J. Autoimmun. 137, 102947 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Hagen, S. H. et al. Heterogeneous escape from X chromosome inactivation results in sex differences in type I IFN responses at the single human pDC level. Cell Rep. 33, 108485 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Abdulai-Saiku, S. et al. The maternal X chromosome affects cognition and brain ageing in female mice. Nature 638, 152–159 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Arai, Y. et al. Hematopoietic loss of Y chromosome activates immune checkpoints and contributes to impaired senescent cell clearance and renal disease. Sci. Transl. Med. 17, eadv4071 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Landry, D. A. et al. Metformin prevents age-associated ovarian fibrosis by modulating the immune landscape in female mice. Sci. Adv. 8, eabq1475 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, Y. et al. Single-cell analysis reveals alternations between the aged and young mice prostates. Biomark Res. 12, 117 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Benedusi, V. et al. Ovariectomy shortens the life span of female mice. Oncotarget 6, 10801–10811 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar