Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature. 2010;463:457–63. https://doi.org/10.1038/nature08909.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gilbert W. Why genes in pieces? Nature. 1978;271:501–501. https://doi.org/10.1038/271501a0.

Article 
CAS 
PubMed 

Google Scholar
 

Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40:1413–5. https://doi.org/10.1038/ng.259.

Article 
CAS 
PubMed 

Google Scholar
 

Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456:470–6. https://doi.org/10.1038/nature07509.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Marasco LE, Kornblihtt AR. The physiology of alternative splicing. Nat Rev Mol Cell Biol. 2023;24:242–54. https://doi.org/10.1038/s41580-022-00545-z.

Article 
CAS 
PubMed 

Google Scholar
 

Li YI, van de Geijn B, Raj A, Knowles DA, Petti AA, Golan D, et al. RNA splicing is a primary link between genetic variation and disease. Science. 2016;352:600–4. https://doi.org/10.1126/science.aad9417.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gotthardt M, Badillo-Lisakowski V, Parikh VN, Ashley E, Furtado M, Carmo-Fonseca M, et al. Cardiac splicing as a diagnostic and therapeutic target. Nat Rev Cardiol. 2023;20:517–30. https://doi.org/10.1038/s41569-022-00828-0.

Article 
PubMed 

Google Scholar
 

Bhattoa HP, Konstantynowicz J, Laszcz N, Wojcik M, Pludowski P. Vitamin D. Musculoskeletal health. Rev Endocr Metab Disord. 2017;18:363–71. https://doi.org/10.1007/s11154-016-9404-x.

Article 
CAS 
PubMed 

Google Scholar
 

Hossein-nezhad A, Holick MF. Vitamin D for health: a global perspective. Mayo Clin Proc. 2013;88:720–55. https://doi.org/10.1016/j.mayocp.2013.05.011.

Article 
CAS 
PubMed 

Google Scholar
 

Gorman CE, Egan F, Alarcón-López FJ, Jakobsen J, McGinnity P, Hulsey CD. Vitamin D modulates gene expression in four major muscle tissues in Atlantic salmon. 2025. https://doi.org/10.21203/rs.3.rs-5267662/v1.

Tress ML, Abascal F, Valencia A. Alternative splicing may not be the key to proteome complexity. Trends Biochem Sci. 2017;42:98–110. https://doi.org/10.1016/j.tibs.2016.08.008.

Article 
CAS 
PubMed 

Google Scholar
 

Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev. 1996;76:371–423. https://doi.org/10.1152/physrev.1996.76.2.371.

Article 
CAS 
PubMed 

Google Scholar
 

Henderson CA, Gomez CG, Novak SM, Mi-Mi L, Gregorio CC. Overview of the muscle cytoskeleton. Compr Physiol. 2017;7:891–944. https://doi.org/10.1002/cphy.c160033.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bottinelli R. Functional heterogeneity of mammalian single muscle fibres: do myosin isoforms tell the whole story? Pflugers Arch. 2001;443:6–17. https://doi.org/10.1007/s004240100700.

Article 
CAS 
PubMed 

Google Scholar
 

Li A, Nelson SR, Rahmanseresht S, Braet F, Cornachione AS, Previs SB, et al. Skeletal MyBP-C isoforms tune the molecular contractility of divergent skeletal muscle systems. Proc Natl Acad Sci U S A. 2019;116:21882–92. https://doi.org/10.1073/pnas.1910549116.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Arora AS, Huang H-L, Singh R, Narui Y, Suchenko A, Hatano T, et al. Structural insights into actin isoforms. eLife. 2023;12:e82015. https://doi.org/10.7554/eLife.82015.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gogulothu R, Nagar D, Gopalakrishnan S, Garlapati VR, Kallamadi PR, Ismail A. Disrupted expression of genes essential for skeletal muscle fibre integrity and energy metabolism in vitamin D deficient rats. J Steroid Biochem Mol Biol. 2020;197:105525. https://doi.org/10.1016/j.jsbmb.2019.105525.

Article 
CAS 
PubMed 

Google Scholar
 

Dirks-Naylor AJ, Lennon-Edwards S. The effects of vitamin D on skeletal muscle function and cellular signaling. J Steroid Biochem Mol Biol. 2011;125:159–68. https://doi.org/10.1016/j.jsbmb.2011.03.003.

Article 
CAS 
PubMed 

Google Scholar
 

Latham CM, Brightwell CR, Keeble AR, Munson BD, Thomas NT, Zagzoog AM, et al. Vitamin d promotes skeletal muscle regeneration and mitochondrial health. Front Physiol. 2021. https://doi.org/10.3389/fphys.2021.660498.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Endo I, Inoue D, Mitsui T, Umaki Y, Akaike M, Yoshizawa T, et al. Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors. Endocrinology. 2003;144:5138–44. https://doi.org/10.1210/en.2003-0502.

Article 
CAS 
PubMed 

Google Scholar
 

Zhou R, Chun RF, Lisse TS, Garcia AJ, Xu J, Adams JS, et al. Vitamin D and alternative splicing of RNA. J Steroid Biochem Mol Biol. 2015;148:310–7. https://doi.org/10.1016/j.jsbmb.2014.09.025.

Article 
CAS 
PubMed 

Google Scholar
 

Bischoff-Ferrari H, Borchers M, Gudat F, Dürmüller U, Stähelin H, Dick W. Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res. 2004;19:265–9. https://doi.org/10.1359/jbmr.2004.19.2.265.

Article 
CAS 
PubMed 

Google Scholar
 

Pfeifer M, Begerow B, Minne HW. Vitamin D and muscle function. Osteoporos Int. 2002;13:187–94. https://doi.org/10.1007/s001980200012.

Article 
CAS 
PubMed 

Google Scholar
 

Ceglia L, Harris SS. Vitamin D and its role in skeletal muscle. Calcif Tissue Int. 2013;92:151–62. https://doi.org/10.1007/s00223-012-9645-y.

Article 
CAS 
PubMed 

Google Scholar
 

Jacobs A, Elmer KR. Alternative splicing and gene expression play contrasting roles in the parallel phenotypic evolution of a salmonid fish. Mol Ecol. 2021;30:4955–69. https://doi.org/10.1111/mec.15817.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Verta J-P, Debes PV, Piavchenko N, Ruokolainen A, Ovaskainen O, Moustakas-Verho JE, et al. Cis-regulatory differences in isoform expression associate with life history strategy variation in Atlantic salmon. PLoS Genet. 2020;16:e1009055. https://doi.org/10.1371/journal.pgen.1009055.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jakobsen J, Smith C, Bysted A, Cashman KD. Vitamin D in wild and farmed Atlantic salmon (Salmo salar)—what do we know? Nutrients. 2019;11:982. https://doi.org/10.3390/nu11050982.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Atsuko T, Toshio O, Makoto T, Tadashi K. Possible origin of extremely high contents of vitamin D3 in some kinds of fish liver. Comparative Biochemistry and Physiology Part A: Physiology. 1991;100:483–7. https://doi.org/10.1016/0300-9629(91)90504-6.

Article 

Google Scholar
 

Lock E-J, Waagbø R, Wendelaar Bonga S, Flik G. The significance of vitamin D for fish: a review. Aquac Nutr. 2010;16:100–16. https://doi.org/10.1111/j.1365-2095.2009.00722.x.

Article 
CAS 

Google Scholar
 

Choi YM, Kim BC. Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality. Livest Sci. 2009;122:105–18. https://doi.org/10.1016/j.livsci.2008.08.015.

Article 

Google Scholar
 

Noto RE, Leavitt L, Edens MA. Physiology, muscle. StatPearls. Treasure Island. (FL): StatPearls Publishing; 2024.


Google Scholar
 

Braun T, Gautel M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol. 2011;12:349–61. https://doi.org/10.1038/nrm3118.

Article 
CAS 
PubMed 

Google Scholar
 

Shih HP, Gross MK, Kioussi C. Muscle development: forming the head and trunk muscles. Acta Histochem. 2008;110:97–108. https://doi.org/10.1016/j.acthis.2007.08.004.

Article 
PubMed 

Google Scholar
 

Chang C-N, Kioussi C, Location. Location, location: signals in muscle specification. J Dev Biol. 2018;6:11. https://doi.org/10.3390/jdb6020011.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ripa R, George T, Shumway KR, Sattar Y, Physiology. In: StatPearls, editor. Cardiac muscle. Treasure Island (FL): StatPearls Publishing; 2024.


Google Scholar
 

Steg A, Oczkowicz M, Świątkiewicz M. Effects of high-dose vitamin D3 supplementation on pig performance, vitamin D content in meat, and muscle transcriptome in pigs. J Anim Physiol Anim Nutr. 2025;109:560–73. https://doi.org/10.1111/jpn.14066.

Article 
CAS 

Google Scholar
 

Hangelbroek RWJ, Vaes AMM, Boekschoten MV, Verdijk LB, Hooiveld GJEJ, van Loon LJC, et al. No effect of 25-hydroxyvitamin D supplementation on the skeletal muscle transcriptome in vitamin D deficient frail older adults. BMC Geriatr. 2019;19:151. https://doi.org/10.1186/s12877-019-1156-5.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yi L, Pimentel H, Bray NL, Pachter L. Gene-level differential analysis at transcript-level resolution. Genome Biol. 2018;19:53. https://doi.org/10.1186/s13059-018-1419-z.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nowicka M, Robinson MD. DRIMSeq: a Dirichlet-multinomial framework for multivariate count outcomes in genomics. F1000Res. 2016;5:1356. https://doi.org/10.12688/f1000research.8900.2.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Love MI, Soneson C, Patro R. Swimming downstream: statistical analysis of differential transcript usage following salmon quantification. F1000Res. 2018;7:952. https://doi.org/10.12688/f1000research.15398.3.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang Y, Xie Z, Kutschera E, Adams JI, Kadash-Edmondson KE, Xing Y. RMATS-turbo: an efficient and flexible computational tool for alternative splicing analysis of large-scale RNA-seq data. Nat Protoc. 2024;19:1083–104. https://doi.org/10.1038/s41596-023-00944-2.

Article 
CAS 
PubMed 

Google Scholar
 

Baralle FE, Giudice J. Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol. 2017;18:437–51. https://doi.org/10.1038/nrm.2017.27.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–9. https://doi.org/10.1038/nmeth.4197.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2016. https://doi.org/10.12688/f1000research.7563.2.

Article 
PubMed Central 

Google Scholar
 

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Van den Berge K, Soneson C, Robinson MD, Clement L. StageR: a general stage-wise method for controlling the gene-level false discovery rate in differential expression and differential transcript usage. Genome Biol. 2017;18:151. https://doi.org/10.1186/s13059-017-1277-0.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, et al. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020;38:276–8. https://doi.org/10.1038/s41587-020-0439-x.

Article 
CAS 
PubMed 

Google Scholar
 

Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, et al. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018;15:475–6. https://doi.org/10.1038/s41592-018-0046-7.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

da Veiga Leprevost F, Grüning BA, Alves Aflitos S, Röst HL, Uszkoreit J, Barsnes H, et al. BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics. 2017;33:2580–2. https://doi.org/10.1093/bioinformatics/btx192.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017;35:316–9. https://doi.org/10.1038/nbt.3820.

Article 
CAS 
PubMed 

Google Scholar
 

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2. https://doi.org/10.14806/ej.17.1.200.

Article 

Google Scholar
 

Andrews S. FastQC a quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 16 May 2025.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. https://doi.org/10.1093/bioinformatics/bts635.

Article 
CAS 
PubMed 

Google Scholar
 

Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521. https://doi.org/10.12688/f1000research.7563.2.

Article 
PubMed 

Google Scholar
 

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B: Statistical Methodology. 1995;57:289–300.

Article 

Google Scholar
 

Zhu A, Ibrahim JG, Love MI. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics. 2018;35:2084–92. https://doi.org/10.1093/bioinformatics/bty895.

Article 
CAS 
PubMed Central 

Google Scholar
 

Pagès H, Carlson M, Aboyoun P, Falcon S, Morgan M. txdbmaker: Tools for making TxDb objects from genomic annotations. R package version 1.4.2. 2025. https://bioconductor.org/packages/txdbmaker; https://doi.org/10.18129/B9.bioc.txdbmaker.

Kolberg L, Raudvere U, Kuzmin I, Adler P, Vilo J, Peterson H. g:Profiler—interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res. 2023;51:W207–12. https://doi.org/10.1093/nar/gkad347.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Seguchi O, Takashima S, Yamazaki S, Asakura M, Asano Y, Shintani Y, et al. A cardiac myosin light chain kinase regulates sarcomere assembly in the vertebrate heart. J Clin Invest. 2007;117:2812–24. https://doi.org/10.1172/JCI30804.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Warren SA, Briggs LE, Zeng H, Chuang J, Chang EI, Terada R, et al. Myosin light chain phosphorylation is critical for adaptation to cardiac stress. Circulation. 2012;126:2575–88. https://doi.org/10.1161/CIRCULATIONAHA.112.116202.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Davis JS, Hassanzadeh S, Winitsky S, Lin H, Satorius C, Vemuri R, et al. The overall pattern of cardiac contraction depends on a spatial gradient of myosin regulatory light chain phosphorylation. Cell. 2001;107:631–41. https://doi.org/10.1016/S0092-8674(01)00586-4.

Article 
CAS 
PubMed 

Google Scholar
 

Moss RL, Fitzsimons DP. Myosin light chain 2 into the mainstream of cardiac development and contractility. Circ Res. 2006;99:225–7. https://doi.org/10.1161/01.RES.0000236793.88131.dc.

Article 
CAS 
PubMed 

Google Scholar
 

Nawata J, Ohno I, Isoyama S, Suzuki J, Miura S, Ikeda J, et al. Differential expression of α1, α3 and α5 integrin subunits in acute and chronic stages of myocardial infarction in rats. Cardiovasc Res. 1999;43:371–81. https://doi.org/10.1016/S0008-6363(99)00117-0.

Article 
CAS 
PubMed 

Google Scholar
 

Neiman G, Scarafía MA, La Greca A, Santín Velazque NL, Garate X, Waisman A, et al. Integrin alpha-5 subunit is critical for the early stages of human pluripotent stem cell cardiac differentiation. Sci Rep. 2019;9:18077. https://doi.org/10.1038/s41598-019-54352-2.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schumacher JA, Wright ZA, Owen ML, Bredemeier NO, Sumanas S. Integrin α5 and integrin α4 cooperate to promote endocardial differentiation and heart morphogenesis. Dev Biol. 2020;465:46–57. https://doi.org/10.1016/j.ydbio.2020.06.006.

Article 
CAS 
PubMed 

Google Scholar
 

Terracio L, Rubin K, Gullberg D, Balog E, Carver W, Jyring R, et al. Expression of collagen binding integrins during cardiac development and hypertrophy. Circ Res. 1991;68:734–44. https://doi.org/10.1161/01.res.68.3.734.

Article 
CAS 
PubMed 

Google Scholar
 

Kim E, Magen A, Ast G. Different levels of alternative splicing among eukaryotes. Nucleic Acids Res. 2007;35:125–31. https://doi.org/10.1093/nar/gkl924.

Article 
CAS 
PubMed 

Google Scholar
 

Wang Y, Liu J, Huang B, Xu Y-M, Li J, Huang L-F, et al. Mechanism of alternative splicing and its regulation. Biomed Rep. 2014;3:152–8. https://doi.org/10.3892/br.2014.407.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE. The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev. 2013;34:33–83. https://doi.org/10.1210/er.2012-1012.

Article 
CAS 
PubMed 

Google Scholar
 

Gunton JE, Girgis CM. Vitamin D and muscle. Bone Rep. 2018;8:163–7. https://doi.org/10.1016/j.bonr.2018.04.004.

Article 
PubMed 
PubMed Central 

Google Scholar
 

de la Guía-Galipienso F, Martínez-Ferran M, Vallecillo N, Lavie CJ, Sanchis-Gomar F, Pareja-Galeano H. Vitamin D and cardiovascular health. Clin Nutr. 2021;40:2946–57. https://doi.org/10.1016/j.clnu.2020.12.025.

Article 
CAS 
PubMed 

Google Scholar
 

den Berge KV, Hembach KM, Soneson C, Tiberi S, Clement L, Love MI et al. RNA Sequencing Data: Hitchhiker’s Guide to Expression Analysis. Annu Rev of Biomed Data Sci. 2019;2 Volume 2, 2019:139–73. https://doi.org/10.1146/annurev-biodatasci-072018-021255.

Bhuiyan SA, Ly S, Phan M, Huntington B, Hogan E, Liu CC, et al. Systematic evaluation of isoform function in literature reports of alternative splicing. BMC Genomics. 2018;19:637. https://doi.org/10.1186/s12864-018-5013-2.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wright CJ, Smith CWJ, Jiggins CD. Alternative splicing as a source of phenotypic diversity. Nat Rev Genet. 2022;23:697–710. https://doi.org/10.1038/s41576-022-00514-4.

Article 
CAS 
PubMed 

Google Scholar
 

Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D, et al. Function of alternative splicing. Gene. 2005;344:1–20. https://doi.org/10.1016/j.gene.2004.10.022.

Article 
CAS 
PubMed 

Google Scholar
 

Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, et al. Function of alternative splicing. Gene. 2013;514:1–30. https://doi.org/10.1016/j.gene.2012.07.083.

Article 
CAS 
PubMed 

Google Scholar
 

Garg A, Jansen S, Greenberg L, Zhang R, Lavine KJ, Greenberg MJ. Dilated cardiomyopathy-associated skeletal muscle actin (ACTA1) mutation R256H disrupts actin structure and function and causes cardiomyocyte hypocontractility. Proc Natl Acad Sci U S A. 2024;121:e2405020121. https://doi.org/10.1073/pnas.2405020121.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar