Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

Article 
CAS 
PubMed 

Google Scholar
 

Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

Article 
CAS 
PubMed 

Google Scholar
 

Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

Article 
CAS 
PubMed 

Google Scholar
 

Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006). This work presents the initial identification of RORγt as the master regulator of the TH17 cell lineage.

Article 
CAS 
PubMed 

Google Scholar
 

Goto, Y. et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal TH17 cell differentiation. Immunity 40, 594–607 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schnell, A., Littman, D. R. & Kuchroo, V. K. TH17 cell heterogeneity and its role in tissue inflammation. Nat. Immunol. 24, 19–29 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stockinger, B. & Omenetti, S. The dichotomous nature of T helper 17 cells. Nat. Rev. Immunol. 17, 535–544 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

McGeachy, M. J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat. Immunol. 8, 1390–1397 (2007). This study reveals that whereas TGFβ1 plus IL-6 polarizes TH17 cells towards a regulatory, IL-10-producing phenotype, the addition of IL-23 enables their pathogenicity and capacity to drive EAE.

Article 
CAS 
PubMed 

Google Scholar
 

Brockmann, L. et al. Intestinal microbiota-specific TH17 cells possess regulatory properties and suppress effector T cells via c-MAF and IL-10. Immunity 56, 2719–2735.e7 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ahern, P. P. et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 33, 279–288 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484, 514–518 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Wu, B. et al. The TGF-β superfamily cytokine activin-A is induced during autoimmune neuroinflammation and drives pathogenic TH17 cell differentiation. Immunity 54, 308–323.e6 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13, 991–999 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005). This study was the first to demonstrate that IL-23 drives the expansion of a pathogenic, IL-17-producing CD4+ T cell population, with a cytokine profile distinct from TH1 cells.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zou, W. & Restifo, N. P. TH17 cells in tumour immunity and immunotherapy. Nat. Rev. Immunol. 10, 248–256 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Anvar, M. T. et al. TH17 cell function in cancers: immunosuppressive agents or anti-tumor allies? Cancer Cell Int. 24, 355 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ciofani, M. et al. A validated regulatory network for TH17 cell specification. Cell 151, 289–303 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yosef, N. et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature 496, 461–468 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of TH17 cell pathogenicity. Cell 163, 1400–1412 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wagner, A. et al. Metabolic modeling of single TH17 cells reveals regulators of autoimmunity. Cell 184, 4168–4185.e21 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hu, L. et al. Proximal and distal regions of pathogenic TH17 related chromatin loci are sequentially accessible during pathogenicity of TH17. Front. Immunol. 13, 864314 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Thakore, P. I. et al. BACH2 regulates diversification of regulatory and proinflammatory chromatin states in TH17 cells. Nat. Immunol. 25, 1395–1410 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Karmaus, P. W. F. et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature 565, 101–105 (2019). This study demonstrates that mTORC1 activity in TH17 cells acts as a central switch that controls their plasticity.

Article 
CAS 
PubMed 

Google Scholar
 

Schnell, A. et al. Stem-like intestinal TH17 cells give rise to pathogenic effector T cells during autoimmunity. Cell 184, 6281–6298.e23 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Mills, K. H. G. IL-17 and IL-17-producing cells in protection versus pathology. Nat. Rev. Immunol. 23, 38–54 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Sun, K. et al. scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory. Nat. Comm. 13, 4943 (2022).

Article 
CAS 

Google Scholar
 

McAllister, F. et al. Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. Cancer Cell 25, 621–637 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chang, S. H. et al. T helper 17 cells play a critical pathogenic role in lung cancer. Proc. Natl Acad. Sci. USA 111, 5664–5669 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Q. et al. Interleukin-17 promotes formation and growth of prostate adenocarcinoma in mouse models. Cancer Res. 72, 2589–2599 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chandra, V. et al. Gut epithelial Interleukin-17 receptor A signaling can modulate distant tumors growth through microbial regulation. Cancer Cell 42, 85–100.e6 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Wang, K. et al. Interleukin-17 receptor A signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity 41, 1052–1063 (2014). This study shows that malignant transformation in epithelial cells is a prerequisite for pro-tumorigenic IL-17 signalling.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Numasaki, M. et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood 101, 2620–2627 (2003).

Article 
CAS 
PubMed 

Google Scholar
 

McCuaig, S. et al. The interleukin 22 pathway interacts with mutant KRAS to promote poor prognosis in colon cancer. Clin. Cancer Res. 26, 4313–4325 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Khosravi, N. et al. IL22 promotes Kras-mutant lung cancer by induction of a protumor immune response and protection of stemness properties. Cancer Immunol. Res. 6, 788–797 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kryczek, I. et al. IL-22+CD4+ T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity 40, 772–784 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Perusina Lanfranca, M. et al. Interleukin 22 signaling regulates acinar cell plasticity to promote pancreatic tumor development in mice. Gastroenterology 158, 1417–1432.e11 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Zhang, Y. et al. Immune cell production of interleukin 17 induces stem cell features of pancreatic intraepithelial neoplasia cells. Gastroenterology 155, 210–223.e3 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Salazar, Y. et al. Microenvironmental TH9 and TH17 lymphocytes induce metastatic spreading in lung cancer. J. Clin. Invest. 130, 3560–3575 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yao, J. et al. Single-cell transcriptomic analysis in a mouse model deciphers cell transition states in the multistep development of esophageal cancer. Nat. Comm. 11, 3715 (2020).

Article 
CAS 

Google Scholar
 

Xing, C. et al. TH17 cells regulate chemokine expression in epithelial cells through C/EBPβ and dictate host sensitivity to colitis and cancer immunity. Sci. Adv. 11, eads3530 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gronke, K. et al. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature 566, 249–253 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Perez, L. G. et al. TGF-β signaling in TH17 cells promotes IL-22 production and colitis-associated colon cancer. Nat. Comm. 11, 2608 (2020).

Article 
CAS 

Google Scholar
 

Fesneau, O. et al. An intestinal TH17 cell-derived subset can initiate cancer. Nat. Immunol. 25, 1637–1649 (2024). This work identifies a novel TH17 cell subset that arises following the loss of TGFβ1 signalling and can directly initiate intestinal tumorigenesis via IFNγ.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009). This study was the first to reveal a causal link between the colonization of a gut pathobiont and IL-17-driven tumorigenesis, establishing the microbiota as a direct instigator of pro-tumorigenic TH17 cell activity.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, L., Yi, T., Zhang, W., Pardoll, D. M. & Yu, H. IL-17 enhances tumor development in carcinogen-induced skin cancer. Cancer Res. 70, 10112–10120 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Benevides, L. et al. IL17 promotes mammary tumor progression by changing the behavior of tumor cells and eliciting tumorigenic neutrophils recruitment. Cancer Res. 75, 3788–3799 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

He, D. et al. IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells. J. Immunol. 184, 2281–2288 (2010).

Article 
CAS 
PubMed 

Google Scholar
 

Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chung, A. S. et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat. Med. 19, 1114–1123 (2013). This mechanistic study shows that TH17 cell-driven recruitment of neutrophils into the TME leads to anti-VEGF therapy resistance.

Article 
CAS 
PubMed 

Google Scholar
 

Numasaki, M. et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J. Immunol. 175, 6177–6189 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Amicarella, F. et al. Dual role of tumour-infiltrating T helper 17 cells in human colorectal cancer. Gut 66, 692–704 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Kryczek, I. et al. Phenotype, distribution, generation, and functional and clinical relevance of TH17 cells in the human tumor environments. Blood 114, 1141–1149 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Martin-Orozco, N. et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31, 787–798 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Muranski, P. et al. Tumor-specific TH17-polarized cells eradicate large established melanoma. Blood 112, 362–373 (2008). This work presents the first evidence that tumour antigen-specific, TCR-engineered TH17 cells can protect against established melanoma.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kadomoto, S., Izumi, K. & Mizokami, A. The CCL20–CCR6 axis in cancer progression. Int. J. Mol. Sci. 21, 5186 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Muranski, P. et al. TH17 cells are long lived and retain a stem cell-like molecular signature. Immunity 35, 972–985 (2011). This study demonstrates that TH17 cells, unlike TH1 cells, maintain stem-like properties that support long-term persistence within the TME and durable antitumour immunity.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bowers, J. S. et al. TH17 cells are refractory to senescence and retain robust antitumor activity after long-term ex vivo expansion. JCI Insight 2, e90772 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Peters, A. et al. TH17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 35, 986–996 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pikor, Natalia B. et al. Integration of TH17- and lymphotoxin-derived signals initiates meningeal-resident stromal cell remodeling to propagate neuroinflammation. Immunity 43, 1160–1173 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Rangel-Moreno, J. et al. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat. Immunol. 12, 639–646 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Eddens, T. et al. Pneumocystis -driven inducible bronchus-associated lymphoid tissue formation requires TH2 and TH17 immunity. Cell Rep. 18, 3078–3090 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schumacher, T. N. & Thommen, D. S. Tertiary lymphoid structures in cancer. Science 375, eabf9419 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Majumder, S. et al. IL-17 metabolically reprograms activated fibroblastic reticular cells for proliferation and survival. Nat. Immunol. 20, 534–545 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cole, A. C. et al. Adoptively transferred TH17 cells cooperate with host B cells to achieve durable tumor immunity. Cancer Cell 43, 1697–1713.e8 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Corgnac, S. et al. CD103+CD8+ TRM cells accumulate in tumors of anti-PD-1-responder lung cancer patients and are tumor-reactive lymphocytes enriched with TC17. Cell Rep. Med. 1, 100127 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Boulch, M. et al. Tumor-intrinsic sensitivity to the pro-apoptotic effects of IFN-γ is a major determinant of CD4+ CAR T-cell antitumor activity. Nat. Cancer 4, 968–983 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Braumüller, H. et al. T-helper-1-cell cytokines drive cancer into senescence. Nature 494, 361–365 (2013).

Article 
PubMed 

Google Scholar
 

Kruse, B. et al. CD4+ T cell-induced inflammatory cell death controls immune-evasive tumours. Nature 618, 1033–1040 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rizzo, A. et al. Smad7 induces plasticity in tumor-infiltrating TH17 cells and enables TNF-α-mediated killing of colorectal cancer cells. Carcinogenesis 35, 1536–1546 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Kebir, H. et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 13, 1173–1175 (2007).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jamann, H. et al. Contact-dependent granzyme B-mediated cytotoxicity of TH17-polarized cells toward human oligodendrocytes. Front. Immunol. 13, 850616 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bailey, S. R. et al. Human CD26high T cells elicit tumor immunity against multiple malignancies via enhanced migration and persistence. Nat. Comm. 8, 1961 (2017).

Article 

Google Scholar
 

Chalmin, F. et al. Stat3 and Gfi-1 transcription factors control TH17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity 36, 362–373 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Downs-Canner, S. et al. Suppressive IL-17A+Foxp3+ and ex-TH17 IL-17AnegFoxp3+ Treg cells are a source of tumour-associated Treg cells. Nat. Comm. 8, 14649 (2017). This fate-mapping study shows that immunosuppressive tumour niches can drive the transdifferentiation of tumour-resident TH17 cells into Treg cells.

Article 
CAS 

Google Scholar
 

Mucciolo, G. et al. IL17A critically shapes the transcriptional program of fibroblasts in pancreatic cancer and switches on their protumorigenic functions. Proc. Natl Acad. Sci. USA 118, e2020395118 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, X. et al. IL-17–induced HIF1α drives resistance to anti–PD-L1 via fibroblast-mediated immune exclusion. J. Exp. Med. 219, e20210693 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Y. et al. Interleukin-17–induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J. Exp. Med. 217, e20190354 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, Y. et al. Interleukin-17F suppressed colon cancer by enhancing caspase 4 mediated pyroptosis of endothelial cells. Sci. Rep. 14, 18363 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tong, Z. et al. A protective role by interleukin-17F in colon tumorigenesis. PLoS One 7, e34959 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Picard, F. S. R. et al. IL-17A-producing CD8+ T cells promote PDAC via induction of inflammatory cancer-associated fibroblasts. Gut 72, 1510 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Neuhaus, F. et al. Reciprocal crosstalk between Th17 and mesothelial cells promotes metastasis-associated adhesion of ovarian cancer cells. Clin. Transl. Med. 14, e1604 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kryczek, I. et al. Human TH17 cells are long-lived effector memory cells. Sci. Transl. Med. 3, 104ra100 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Buck, M. ichaelD. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Baixauli, F. et al. An LKB1–mitochondria axis controls TH17 effector function. Nature 610, 555–561 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hong, H. S. et al. OXPHOS promotes apoptotic resistance and cellular persistence in TH17 cells in the periphery and tumor microenvironment. Sci. Immunol. 7, eabm8182 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lin, C.-H. et al. Selective IL-27 production by intestinal regulatory T cells permits gut-specific regulation of TH17 cell immunity. Nat. Immunol. 24, 2108–2120 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Knochelmann, H. M. et al. IL6 fuels durable memory for TH17 cell–mediated responses to tumors. Cancer Res. 80, 3920–3932 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254–258 (2012). This study shows that breakdown of the intestinal epithelial barrier in early adenomas permits bacterial translocation, which drives tumour-promoting TH17 cell-mediated inflammation.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dmitrieva-Posocco, O. et al. Cell-type-specific responses to interleukin-1 control microbial invasion and tumor-elicited inflammation in colorectal cancer. Immunity 50, 166–180.e7 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Voigt, C. et al. Cancer cells induce interleukin-22 production from memory CD4+ T cells via interleukin-1 to promote tumor growth. Proc. Natl Acad. Sci. USA 114, 12994–12999 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Laoui, D. et al. The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity. Nat. Comm. 7, 13720 (2016).

Article 
CAS 

Google Scholar
 

Mangani, D. et al. Transcription factor TCF1 binds to RORγt and orchestrates a regulatory network that determines homeostatic TH17 cell state. Immunity 57, 2565–2582.e6 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

West, N. R., McCuaig, S., Franchini, F. & Powrie, F. Emerging cytokine networks in colorectal cancer. Nat. Rev. Immunol. 15, 615–629 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Chatterjee, S. et al. Reducing CD73 expression by IL1β-programmed TH17 cells improves immunotherapeutic control of tumors. Cancer Res. 74, 6048–6059 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Minns, D. et al. The neutrophil antimicrobial peptide cathelicidin promotes TH17 differentiation. Nat. Comm. 12, 1285 (2021).

Article 
CAS 

Google Scholar
 

Walch-Rückheim, B. et al. Stromal fibroblasts induce CCL20 through IL6/C/EBPβ to support the recruitment of TH17 cells during cervical cancer progression. Cancer Res. 75, 5248–5259 (2015).

Article 
PubMed 

Google Scholar
 

Yu, Q., Lou, X.-M. & He, Y. Preferential recruitment of TH17 cells to cervical cancer via CCR6–CCL20 pathway. PLoS ONE 10, e0120855 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Guedan, S. et al. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood 124, 1070–1080 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dhodapkar, K. M. et al. Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (TH17-1 cells) enriched in the bone marrow of patients with myeloma. Blood 112, 2878–2885 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wyatt, M. M. et al. Augmenting TCR signal strength and ICOS costimulation results in metabolically fit and therapeutically potent human CAR TH17 cells. Mol. Ther. 31, 2120–2131 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sun, J. et al. Tumor exosome promotes TH17 cell differentiation by transmitting the lncRNA CRNDE-h in colorectal cancer. Cell Death Dis. 12, 123 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guo, D. et al. Exosomes from heat-stressed tumour cells inhibit tumour growth by converting regulatory T cells to TH17 cells via IL-6. Immunology 154, 132–143 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, F., Bu, Z., Zhao, F. & Xiao, D. Increased T-helper 17 cell differentiation mediated by exosome-mediated microRNA-451 redistribution in gastric cancer infiltrated T cells. Cancer Sci. 109, 65–73 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Zhou, J. et al. Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/TH17 cell imbalance in epithelial ovarian cancer. Cancer Immunol. Res. 6, 1578–1592 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Huang, Y. et al. CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcome. Oncotarget 6, 17462–17478 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Blatner, N. R. et al. Expression of RORαt marks a pathogenic regulatory T cell subset in human colon cancer. Sci. Transl. Med. 4, 164ra159 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rizzo, A. et al. Smad7 expression in T cells prevents colitis-associated cancer. Cancer Res. 71, 7423–7432 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Koncina, E. et al. IL1R1+ cancer-associated fibroblasts drive tumor development and immunosuppression in colorectal cancer. Nat. Comm. 14, 4251 (2023).

Article 
CAS 

Google Scholar
 

Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263 (2011). This study presents the first use of Il17a fate-reporter mice, demonstrating plasticity within the TH17 cell compartment as IL-17+ TH17 cells act as a reservoir for IFNγ+ TH17 cells during EAE.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wong, S. H. et al. Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology 153, 1621–1633.e6 (2017).

Article 
PubMed 

Google Scholar
 

Long, X. et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat. Microbiol. 4, 2319–2330 (2019).

Article 
PubMed 

Google Scholar
 

Cao, Y. et al. Enterotoxigenic Bacteroides fragilis promotes intestinal inflammation and malignancy by inhibiting exosome-packaged miR-149-3p. Gastroenterology 161, 1552–1566.e12 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Brennan, C. A. et al. Fusobacterium nucleatum drives a pro-inflammatory intestinal microenvironment through metabolite receptor-dependent modulation of IL-17 expression. Gut Microbes 13, 1987780 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhao, L. et al. Parvimonas micra promotes colorectal tumorigenesis and is associated with prognosis of colorectal cancer patients. Oncogene 41, 4200–4210 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xing, C. et al. Microbiota regulate innate immune signaling and protective immunity against cancer. Cell Host Microbe 29, 959–974.e7 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Omenetti, S. et al. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory TH17 cells. Immunity 51, 77–89.e76 (2019). This study maps the regulatory networks which control intestinal TH17 cells, revealing that functionally distinct subsets are differentially induced by commensal and pathogenic bacteria.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chung, L. et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe 23, 203–214.e5 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359, 592–597 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Viaud, S. et al. Cyclophosphamide induces differentiation of TH17 cells in cancer patients. Cancer Res. 71, 661–665 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yang, Y. et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510, 152–156 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kalaora, S. et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature 592, 138–143 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Naghavian, R. et al. Microbial peptides activate tumour-infiltrating lymphocytes in glioblastoma. Nature 617, 807–817 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Najar, T. A. et al. Microbiota-induced plastic T cells enhance immune control of antigen-sharing tumors. Preprint at bioRxiv https://doi.org/10.1101/2024.08.12.607605 (2024).

Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ternes, D. et al. The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat. Metab. 4, 458–475 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Han, J.-X. et al. Microbiota-derived tryptophan catabolites mediate the chemopreventive effects of statins on colorectal cancer. Nat. Microbiol. 8, 919–933 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Song, X. et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577, 410–415 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Paik, D. et al. Human gut bacteria produce TH17-modulating bile acid metabolites. Nature 603, 907–912 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wilck, N. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585–589 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518–522 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yang, W. et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat. Comm. 11, 4457 (2020).

Article 
CAS 

Google Scholar
 

Chen, L. et al. Microbiota metabolite butyrate differentially regulates TH1 and TH17 cells’ differentiation and function in induction of colitis. Inflamm. Bowel Dis. 25, 1450–1461 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Luu, M. et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat. Comm. 10, 760 (2019).

Article 
CAS 

Google Scholar
 

Park, J. et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway. Mucosal Immunol. 8, 80–93 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Deng, Z. et al. Enterobacteria-secreted particles induce production of exosome-like S1P-containing particles by intestinal epithelium to drive TH17-mediated tumorigenesis. Nat. Comm. 6, 6956 (2015).

Article 
CAS 

Google Scholar
 

Briukhovetska, D. et al. Interleukins in cancer: from biology to therapy. Nat. Rev. Cancer 21, 481–499 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xiao, S. et al. Small-molecule RORγt antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity 40, 477–489 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ling, L. et al. Circulating and tumor-infiltrating mucosal associated invariant T (MAIT) cells in colorectal cancer patients. Sci. Rep. 6, 20358 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wu, L. et al. Niche-selective inhibition of pathogenic TH17 cells by targeting metabolic redundancy. Cell 182, 641–654.e20 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chao, Y.-Y. et al. Human TH17 cells engage gasdermin E pores to release IL-1α on NLRP3 inflammasome activation. Nat. Immunol. 24, 295–308 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Park, E. et al. Integrin α3 promotes TH17 cell polarization and extravasation during autoimmune neuroinflammation. Sci. Immunol. 8, eadg7597 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Du, F. et al. Inflammatory TH17 cells express integrin αvβ3 for pathogenic function. Cell Rep. 16, 1339–1351 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Duc, D. et al. Disrupting myelin-specific TH17 cell gut homing confers protection in an adoptive transfer experimental autoimmune encephalomyelitis. Cell Rep. 29, 378–390.e4 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Feagan, B. G. et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 369, 699–710 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Van De Veerdonk, F. L. et al. The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe 5, 329–340 (2009).

Article 
PubMed 

Google Scholar
 

Son, S. et al. Induction of T-helper-17-cell-mediated anti-tumour immunity by pathogen-mimicking polymer nanoparticles. Nat. Biomed. Eng. 7, 72–84 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Anker, J. F. et al. Multi-faceted immunomodulatory and tissue-tropic clinical bacterial isolate potentiates prostate cancer immunotherapy. Nat. Comm. 9, 1591 (2018).

Article 

Google Scholar
 

Harbour, S. N. et al. TH17 cells require ongoing classic IL-6 receptor signaling to retain transcriptional and functional identity. Sci. Immunol. 5, eaaw2262 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gao, Y. et al. Transcriptional profiling identifies caspase-1 as a T cell–intrinsic regulator of TH17 differentiation. J. Exp. Med. 217, e20190476 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Y. et al. Anti-CD40-induced inflammatory E-cadherin+ dendritic cells enhance T cell responses and antitumour immunity in murine Lewis lung carcinoma. J. Exp. Clin. Cancer Res. 34, 11 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Vedunova, M. et al. DC vaccines loaded with glioma cells killed by photodynamic therapy induce TH17 anti-tumor immunity and provide a four-gene signature for glioma prognosis. Cell Death Dis. 13, 1062 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Luo, Y. et al. TH17-inducing dendritic cell vaccines stimulate effective CD4 T cell-dependent antitumor immunity in ovarian cancer that overcomes resistance to immune checkpoint blockade. J. Immunother. Cancer 11, e007661 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Block, M. S. et al. TH17-inducing autologous dendritic cell vaccination promotes antigen-specific cellular and humoral immunity in ovarian cancer patients. Nat. Comm. 11, 5173 (2020). This phase I clinical trial shows that an autologous DC vaccine can induce protective, tumour antigen-specific TH17 cell responses in ovarian cancer.

Article 
CAS 

Google Scholar
 

Izumi, G. et al. CD11b+ lung dendritic cells at different stages of maturation induce TH17 or TH2 differentiation. Nat. Comm. 12, 5029 (2021).

Article 
CAS 

Google Scholar
 

Xu, K. et al. Glycolytic ATP fuels phosphoinositide 3-kinase signaling to support effector T helper 17 cell responses. Immunity 54, 976–987.e7 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hochrein, S. M. et al. The glucose transporter GLUT3 controls T helper 17 cell responses through glycolytic-epigenetic reprogramming. Cell Metab. 34, 516–532.e11 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, C. et al. Vitamin B5 rewires TH17 cell metabolism via impeding PKM2 nuclear translocation. Cell Rep. 41, 111741 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Kaufmann, U. et al. Calcium signaling controls pathogenic TH17 cell-mediated inflammation by regulating mitochondrial function. Cell Metab. 29, 1104–1118.e6 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, C. et al. CD5L/AIM regulates lipid biosynthesis and restrains TH17 cell pathogenicity. Cell 163, 1413–1427 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chatterjee, S. et al. CD38–NAD+ axis regulates immunotherapeutic anti-tumor T cell response. Cell Metab. 27, 85–100.e8 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Bawden, E. G. et al. CD4+ T cell immunity against cutaneous melanoma encompasses multifaceted MHC II–dependent responses. Sci. Immunol. 9, eadi9517 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Mucida, D. et al. Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 14, 281–289 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fonseca, R. et al. Runx3 drives a CD8+ T cell tissue residency program that is absent in CD4+ T cells. Nat. Immunol. 23, 1236–1245 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Wang, Y. et al. The transcription factors T-bet and runx are required for the ontogeny of pathogenic interferon-γ-producing T helper 17 cells. Immunity 40, 355–366 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Śledzińska, A. et al. Regulatory T cells restrain interleukin-2- and blimp-1-dependent acquisition of cytotoxic function by CD4+ T cells. Immunity 52, 151–166.e6 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Serroukh, Y. et al. The transcription factors runx3 and ThPOK cross-regulate acquisition of cytotoxic function by human TH1 lymphocytes. eLife 7, e30496 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ciucci, T. et al. The emergence and functional fitness of memory CD4+ T cells require the transcription factor Thpok. Immunity 50, 91–105.e4 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gagliani, N. et al. TH17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221–225 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shin, B. et al. Mitochondrial oxidative phosphorylation regulates the fate decision between pathogenic TH17 and regulatory T cells. Cell Rep. 30, 1898–1909.e4 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guo, Y. et al. Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity. Nat. Immunol. 22, 746–756 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Eil, R. et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537, 539–543 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Larson, R. C. & Maus, M. V. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat. Rev. Cancer 21, 145–161 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wittling, M. C. et al. Distinct host preconditioning regimens differentially impact the antitumor potency of adoptively transferred TH17 cells. J. Immunother. Cancer 12, e008715 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Paulos, C. M. et al. The inducible costimulator (ICOS) is critical for the development of human TH17 cells. Sci. Transl. Med. 2, 55ra78 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yu, C. et al. Human CD1c+ dendritic cells drive the differentiation of CD103+CD8+ mucosal effector T cells via the cytokine TGF-β. Immunity 38, 818–830 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jung, I.-Y. et al. Tissue-resident memory CAR T cells with stem-like characteristics display enhanced efficacy against solid and liquid tumors. Cell Rep. Med. 4, 101053 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, X. et al. Febrile temperature critically controls the differentiation and pathogenicity of T helper 17 cells. Immunity 52, 328–341.e5 (2020).

Article 
PubMed 

Google Scholar
 

Xu, N. et al. STING agonist promotes CAR T cell trafficking and persistence in breast cancer. J. Exp. Med. 218, e20200844 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Ma, X. et al. Interleukin-23 engineering improves CAR T cell function in solid tumors. Nat. Biotechnol. 38, 448–459 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Benchetrit, F. et al. Interleukin-17 inhibits tumor cell growth by means of a T-cell–dependent mechanism. Blood 99, 2114–2121 (2002).

Article 
CAS 
PubMed 

Google Scholar