Cui, J. et al. Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc. Natl Acad. Sci. USA 102, 1791–1796 (2005).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Shine, M. B., Xiao, X., Kachroo, P. & Kachroo, A. Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. Plant Sci. 279, 81–86 (2019).

Article 
PubMed 

Google Scholar
 

Riedlmeier, M. et al. Monoterpenes support systemic acquired resistance within and between plants. Plant Cell 29, 1440–1459 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, C. et al. Extracellular pyridine nucleotides trigger plant systemic immunity through a lectin receptor kinase/BAK1 complex. Nat. Commun. 10, 4810 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Shine, M. et al. Phased small RNA–mediated systemic signaling in plants. Sci. Adv. 8, eabm8791 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Liu, H. et al. Piperideine-6-carboxylic acid regulates vitamin B6 homeostasis and modulates systemic immunity in plants. Nat. Plants 11, 263–278 (2025).

Article 
PubMed 

Google Scholar
 

Wendehenne, D., Gao, Q. M., Kachroo, A. & Kachroo, P. Free radical-mediated systemic immunity in plants. Curr. Opin. Plant Biol. 20, 127–134 (2014).

Article 
PubMed 

Google Scholar
 

Yu, K. et al. A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity. Cell Rep. 3, 1266–1278 (2013).

Article 
PubMed 

Google Scholar
 

Gao, Q. M. et al. Mono- and digalactosyldiacylglycerol lipids function nonredundantly to regulate systemic acquired resistance in plants. Cell Rep. 9, 1681–1691 (2014).

Article 
PubMed 

Google Scholar
 

Kachroo, A. & Kachroo, P. Mobile signals in systemic acquired resistance. Curr. Opin. Plant Biol. 58, 41–47 (2020).

Article 
PubMed 

Google Scholar
 

Wenig, M. et al. Systemic acquired resistance networks amplify airborne defense cues. Nat. Commun. 10, 3813 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lim, G.-H. et al. The plant cuticle regulates apoplastic transport of salicylic acid during systemic acquired resistance. Sci. Adv. 6, eaaz0478 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lim, G.-H. et al. Plasmodesmata localizing proteins regulate transport and signaling during systemic acquired immunity in plants. Cell Host Microbe 19, 541–549 (2016).

Article 
PubMed 

Google Scholar
 

Shah, J., Chaturvedi, R., Chowdhury, Z., Venables, B. & Petros, R. A. Signaling by small metabolites in systemic acquired resistance. Plant J. 79, 645–658 (2014).

Article 
PubMed 

Google Scholar
 

Zeier, J. Metabolic regulation of systemic acquired resistance. Curr. Opin. Plant Biol. 62, 102050 (2021).

Article 
PubMed 

Google Scholar
 

Vlot, A. C. et al. Systemic propagation of immunity in plants. N. Phytol. 229, 1234–1250 (2021).

Article 

Google Scholar
 

Grant, M. R. et al. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269, 843–846 (1995).

Article 
PubMed 

Google Scholar
 

Grant, M. et al. The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J. 23, 441–450 (2000).

Article 
PubMed 

Google Scholar
 

Jacob, P. et al. Plant ‘helper’ immune receptors are Ca2+-permeable nonselective cation channels. Science 373, 420–425 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bennett, M., Mehta, M. & Grant, M. Biophoton imaging: a nondestructive method for assaying R gene responses. Mol. Plant Microbe Interact. 18, 95–102 (2005).

Article 
PubMed 

Google Scholar
 

Birtic, S. et al. Using spontaneous photon emission to image lipid oxidation patterns in plant tissues. Plant J. 67, 1103–1115 (2011).

Article 
PubMed 

Google Scholar
 

Truman, W., Bennett, M. H., Kubigsteltig, I., Turnbull, C. & Grant, M. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc. Natl Acad. Sci. USA 104, 1075–1080 (2007).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kiep, V. et al. Systemic cytosolic Ca(2+) elevation is activated upon wounding and herbivory in Arabidopsis. N. Phytol. 207, 996–1004 (2015).

Article 

Google Scholar
 

Kiefer, I. W. & Slusarenko, A. J. The pattern of systemic acquired resistance induction within the Arabidopsis rosette in relation to the pattern of translocation. Plant Physiol. 132, 840–847 (2003).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bent, A. F. et al. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265, 1856–1860 (1994).

Article 
PubMed 

Google Scholar
 

Gassmann, W., Hinsch, M. E. & Staskawicz, B. J. The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR–NBS–LRR family of disease-resistance genes. Plant J. 20, 265–277 (1999).

Article 
PubMed 

Google Scholar
 

Littlejohn, G. R., Breen, S., Smirnoff, N. & Grant, M. Chloroplast immunity illuminated. N. Phytol. https://doi.org/10.1111/nph.17076 (2020).

Fu, Z. Q. et al. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486, 228–232 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rate, D. N. & Greenberg, J. T. The Arabidopsis aberrant growth and death2 mutant shows resistance to Pseudomonas syringae and reveals a role for NPR1 in suppressing hypersensitive cell death. Plant J. 27, 203–211 (2001).

Article 
PubMed 

Google Scholar
 

Cao, H., Bowling, S. A., Gordon, A. S. & Dong, X. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6, 1583–1592 (1994).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Liu, L. et al. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nat. Commun. 7, 13099 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zheng, X. Y. et al. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11, 587–596 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wildermuth, M. C., Dewdney, J., Wu, G. & Ausubel, F. M. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414, 562–565 (2001).

Article 
PubMed 

Google Scholar
 

Hartmann, M. et al. Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity. Cell 173, 456–469 e416 (2018).

Article 
PubMed 

Google Scholar
 

Thines, B. et al. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448, 661–665 (2007).

Article 
PubMed 

Google Scholar
 

Katsir, L., Schilmiller, A. L., Staswick, P. E., He, S. Y. & Howe, G. A. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl Acad. Sci. USA 105, 7100–7105 (2008).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Torres Zabala, M. et al. Novel JAZ co-operativity and unexpected JA dynamics underpin Arabidopsis defence responses to Pseudomonas syringae infection. N. Phytol. 209, 1120–1134 (2015).

Article 

Google Scholar
 

Brooks, D. M. et al. Identification and characterization of a well-defined series of coronatine biosynthetic mutants of Pseudomonas syringae pv. tomato DC3000. Mol. Plant Microbe Interact. 17, 162–174 (2004).

Article 
PubMed 

Google Scholar
 

Zhang, L., Zhang, F., Melotto, M., Yao, J. & He, S. Y. Jasmonate signaling and manipulation by pathogens and insects. J. Exp. Bot. 68, 1371–1385 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Mousavi, S. A., Chauvin, A., Pascaud, F., Kellenberger, S. & Farmer, E. E. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 500, 422–426 (2013).

Article 
PubMed 

Google Scholar
 

Ellis, C. & Turner, J. A conditionally fertile coi1 allele indicates cross-talk between plant hormone signalling pathways in Arabidopsis thaliana seeds and young seedlings. Planta 215, 549–556 (2002).

Article 
PubMed 

Google Scholar
 

Park, J. H. et al. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J. 31, 1–12 (2002).

Article 
PubMed 

Google Scholar
 

Li, M., Yu, G., Cao, C. & Liu, P. Metabolism, signaling, and transport of jasmonates. Plant Commun. 2, 100231 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wasternack, C. & Song, S. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J. Exp. Bot. 68, 1303–1321 (2017).

PubMed 

Google Scholar
 

Cucurou, C., Battioni, J. P., Thang, D. C., Nam, N. H. & Mansuy, D. Mechanisms of inactivation of lipoxygenases by phenidone and BW755C. Biochemistry 30, 8964–8970 (1991).

Article 
PubMed 

Google Scholar
 

Farmer, E. E., Caldelari, D., Pearce, G., Walker-Simmons, M. K. & Ryan, C. A. Diethyldithiocarbamic acid inhibits the octadecanoid signaling pathway for the wound induction of proteinase inhibitors in tomato leaves. Plant Physiol. 106, 337–342 (1994).

Article 

Google Scholar
 

Meesters, C. et al. A chemical inhibitor of jasmonate signaling targets JAR1 in Arabidopsis thaliana. Nat. Chem. Biol. 10, 830–836 (2014).

Article 
PubMed 

Google Scholar
 

Nguyen, C. T., Kurenda, A., Stolz, S., Chetelat, A. & Farmer, E. E. Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. Proc. Natl Acad. Sci. USA 115, 10178–10183 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Choi, W. G., Hilleary, R., Swanson, S. J., Kim, S. H. & Gilroy, S. Rapid, long-distance electrical and calcium signaling in plants. Annu. Rev. Plant Biol. 67, 287–307 (2016).

Article 
PubMed 

Google Scholar
 

Toyota, M. et al. Glutamate triggers long-distance, calcium-based plant defense signaling. Science 361, 1112–1115 (2018).

Article 
PubMed 

Google Scholar
 

Yan, C. et al. Ca(2+)/calmodulin-mediated desensitization of glutamate receptors shapes plant systemic wound signalling and anti-herbivore defence. Nat. Plants 10, 145–160 (2024).

Article 
PubMed 

Google Scholar
 

Wang, J., Song, W. & Chai, J. Structure, biochemical function, and signaling mechanism of plant NLRs. Mol. Plant 16, 75–95 (2023).

Article 
PubMed 

Google Scholar
 

de Torres-Zabala, M. et al. Chloroplasts play a central role in plant defence and are targeted by pathogen effectors. Nat. Plants 1, 15074 (2015).

Article 
PubMed 

Google Scholar
 

Mur, L. A., Kenton, P., Atzorn, R., Miersch, O. & Wasternack, C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 140, 249–262 (2006).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jacob, P., Hige, J. & Dangl, J. L. Is localized acquired resistance the mechanism for effector-triggered disease resistance in plants? Nat. Plants https://doi.org/10.1038/s41477-023-01466-1 (2023).

Betsuyaku, S. et al. Salicylic acid and jasmonic acid pathways are activated in spatially different domains around the infection site during effector-triggered immunity in Arabidopsis thaliana. Plant Cell Physiol. 59, 8–16 (2018).

Article 
PubMed 

Google Scholar
 

Andersson, M. X. et al. Oxylipin profiling of the hypersensitive response in Arabidopsis thaliana: formation of a novel oxo-phytodienoic acid-containing galactolipid, arabidopside E. J. Biol. Chem. 281, 31528–31537 (2006).

PubMed 

Google Scholar
 

Zoeller, M. et al. Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid. Plant Physiol. 160, 365–378 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li, Q., Wang, C. & Mou, Z. Perception of damaged self in plants. Plant Physiol. 182, 1545–1565 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Vega-Munoz, I. et al. Breaking bad news: dynamic molecular mechanisms of wound response in plants. Front. Plant Sci. 11, 610445 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yuan, M., Ngou, B. P. M., Ding, P. & Xin, X. F. PTI–ETI crosstalk: an integrative view of plant immunity. Curr. Opin. Plant Biol. 62, 102030 (2021).

Article 
PubMed 

Google Scholar
 

Bjornson, M., Pimprikar, P., Nurnberger, T. & Zipfel, C. The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity. Nat. Plants 7, 579–586 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Manzoor, H. et al. Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance to Hyaloperonospora arabidopsidis. Plant J. 76, 466–480 (2013).

Article 
PubMed 

Google Scholar
 

Perkins, L. E. et al. Generalist insects behave in a jasmonate-dependent manner on their host plants, leaving induced areas quickly and staying longer on distant parts. Proc. R. Soc. B 280, 20122646 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Morin, H. et al. Wound-response jasmonate dynamics in the primary vasculature. N. Phytol. 240, 1484–1496 (2023).

Article 

Google Scholar
 

Gilroy, S. et al. ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol. 171, 1606–1615 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

de Torres, M. et al. Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis. Plant J. 47, 368–382 (2006).

Article 
PubMed 

Google Scholar
 

Procko, C. et al. Leaf cell-specific and single-cell transcriptional profiling reveals a role for the palisade layer in UV light protection. Plant Cell 34, 3261–3279 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

Article 
PubMed 

Google Scholar
 

O’Malley, R. C., Alonso, J. M., Kim, C. J., Leisse, T. J. & Ecker, J. R. An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome. Nat. Protoc. 2, 2910–2917 (2007).

Article 
PubMed 

Google Scholar
 

Engler, C. et al. A Golden Gate modular cloning toolbox for plants. ACS Synth. Biol. 3, 839–843 (2014).

Article 
PubMed 

Google Scholar
 

King, E. O., Ward, M. K. & Raney, D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44, 301–307 (1954).

PubMed 

Google Scholar
 

Rufian, J. S., Rueda-Blanco, J., Beuzon, C. R. & Ruiz-Albert, J. Protocol: an improved method to quantify activation of systemic acquired resistance (SAR). Plant Methods 15, 16 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

Article 
PubMed 

Google Scholar