Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).

Article 
PubMed 
CAS 

Google Scholar
 

Georjon, H. & Bernheim, A. The highly diverse antiphage defence systems of bacteria. Nat. Rev. Microbiol. 21, 686–700 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Millman, A. et al. An expanded arsenal of immune systems that protect bacteria from phages. Cell Host Microbe 30, 1556–1569.e5 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Gao, L. et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Rousset, F. et al. Phages and their satellites encode hotspots of antiviral systems. Cell Host Microbe 30, 740–753.e5 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Vassallo, C. N., Doering, C. R., Littlehale, M. L., Teodoro, G. I. C. & Laub, M. T. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome. Nat. Microbiol. 7, 1568–1579 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Payne, L. J. et al. PADLOC: a web server for the identification of antiviral defence systems in microbial genomes. Nucleic Acids Res. 50, W541–W550 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Tesson, F. et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat. Commun. 13, 2561 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Néron, B. et al. MacSyFinder v2: Improved modelling and search engine to identify molecular systems in genomes. Peer Community J. 3, e28 (2023).

Ledvina, H. E. & Whiteley, A. T. Conservation and similarity of bacterial and eukaryotic innate immunity. Nat. Rev. Microbiol. 22, 420–434 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Kibby, E. M. et al. A bacterial NLR-related protein recognizes multiple unrelated phage triggers to sense infection. Preprint at bioRxiv https://doi.org/10.1101/2024.12.17.629029 (2024).

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Huiting, E. & Bondy-Denomy, J. Defining the expanding mechanisms of phage-mediated activation of bacterial immunity. Curr. Opin. Microbiol. 74, 102325 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Zhang, T. et al. A bacterial immunity protein directly senses two disparate phage proteins. Nature 635, 728–735 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Tan, J. M. J. et al. A DNA-gated molecular guard controls bacterial Hailong anti-phage defence. Nature 643, 794–800 (2025).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Ochman, H. & Selander, R. K. Standard reference strains of Escherichia coli from natural populations. J. Bacteriol. 157, 690–693 (1984).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Johnson, A. G. & Kranzusch, P. J. What bacterial cell death teaches us about life. PLoS Pathog. 18, e1010879 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Agirrezabala, X. et al. Maturation of phage T7 involves structural modification of both shell and inner core components. EMBO J. 24, 3820–3829 (2005).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Guo, F. et al. Visualization of uncorrelated, tandem symmetry mismatches in the internal genome packaging apparatus of bacteriophage T7. Proc. Natl Acad. Sci. USA 110, 6811–6816 (2013).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Steven, A. C. et al. Molecular substructure of a viral receptor-recognition protein. The gp17 tail-fiber of bacteriophage T7. J. Mol. Biol. 200, 351–365 (1988).

Article 
PubMed 
CAS 

Google Scholar
 

Saha, C. K., Sanches Pires, R., Brolin, H., Delannoy, M. & Atkinson, G. C. FlaGs and webFlaGs: discovering novel biology through the analysis of gene neighbourhood conservation. Bioinformatics 37, 1312–1314 (2021).

Article 
PubMed 
CAS 

Google Scholar
 

Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Blum, M. et al. InterPro: the protein sequence classification resource in 2025. Nucleic Acids Res. 53, D444–D456 (2025).

Article 
PubMed 

Google Scholar
 

Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 50, D20–D26 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Gabler, F. et al. Protein sequence analysis using the MPI Bioinformatics Toolkit. Curr. Protoc. Bioinform. 72, e108 (2020).

Article 
CAS 

Google Scholar
 

van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).

Article 
PubMed 

Google Scholar
 

Miller, E. S. et al. Bacteriophage T4 genome. Microbiol. Mol. Biol. Rev. 67, 86–156 (2003).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Cuervo, A. et al. Structural characterization of the bacteriophage T7 tail machinery. J. Biol. Chem. 288, 26290–26299 (2013).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Granell, M., Namura, M., Alvira, S., Kanamaru, S. & van Raaij, M. J. Crystal structure of the carboxy-terminal region of the bacteriophage T4 proximal long tail fiber protein Gp34. Viruses 9, 168 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hyman, P. & van Raaij, M. Bacteriophage T4 long tail fiber domains. Biophys. Rev. 10, 463–471 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cuervo, A. et al. Structures of T7 bacteriophage portal and tail suggest a viral DNA retention and ejection mechanism. Nat. Commun. 10, 3746 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Taslem Mourosi, J. et al. Understanding bacteriophage tail fiber interaction with host surface receptor: the key ‘blueprint’ for reprogramming phage host range. Int. J. Mol. Sci. 23, 12146 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Fineran, P. C. et al. The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair. Proc. Natl Acad. Sci. USA 106, 894–899 (2009).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Jankevicius, G., Ariza, A., Ahel, M. & Ahel, I. The toxin–antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA. Mol. Cell 64, 1109–1116 (2016).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

The RNAcentral Consortium RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Res. 47, D221–D229 (2019).

Article 

Google Scholar
 

Ontiveros-Palacios, N. et al. Rfam 15: RNA families database in 2025. Nucleic Acids Res. 53, D258–D267 (2025).

Article 
PubMed 

Google Scholar
 

Wang, C., Zeng, J. & Wang, J. Structural basis of bacteriophage lambda capsid maturation. Structure 30, 637–645.e3 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Lee, H. et al. Diverse bacterial pattern recognition receptors sense the conserved phage proteome. Preprint at bioRxiv https://doi.org/10.64898/2026.01.04.697583 (2026).

Gao, L. A. et al. Prokaryotic innate immunity through pattern recognition of conserved viral proteins. Science 377, eabm4096 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Valegård, K., Murray, J. B., Stockley, P. G., Stonehouse, N. J. & Liljas, L. Crystal structure of an RNA bacteriophage coat protein–operator complex. Nature 371, 623–626 (1994).

Article 
PubMed 

Google Scholar
 

Ni, C. Z. et al. Crystal structure of the MS2 coat protein dimer: implications for RNA binding and virus assembly. Structure 3, 255–263 (1995).

Article 
PubMed 
CAS 

Google Scholar
 

Valegârd, K. et al. The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein–RNA interactions. J. Mol. Biol. 270, 724–738 (1997).

Article 
PubMed 

Google Scholar
 

McKenna, R., Ilag, L. L. & Rossmann, M. G. Analysis of the single-stranded DNA bacteriophage phi X174, refined at a resolution of 3.0 A. J. Mol. Biol. 237, 517–543 (1994).

Article 
PubMed 
CAS 

Google Scholar
 

Marvin, D. A., Hale, R. D., Nave, C. & Helmer-Citterich, M. Molecular models and structural comparisons of native and mutant class I filamentous bacteriophages Ff (fd, f1, M13), If1 and IKe. J. Mol. Biol. 235, 260–286 (1994).

Article 
PubMed 
CAS 

Google Scholar
 

Steczkiewicz, K., Muszewska, A., Knizewski, L., Rychlewski, L. & Ginalski, K. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Nucleic Acids Res. 40, 7016–7045 (2012).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Lowey, B. et al. CBASS immunity uses CARF-related effectors to sense 3′–5′- and 2′–5′-linked cyclic oligonucleotide signals and protect bacteria from phage infection. Cell 182, 38–49.e17 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Kibby, E. M. et al. Bacterial NLR-related proteins protect against phage. Cell 186, 2410–2424.e18 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Duda, R. L. & Teschke, C. M. The amazing HK97 fold: versatile results of modest differences. Curr. Opin. Virol. 36, 9–16 (2019).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

Article 
PubMed 
CAS 

Google Scholar
 

Hashemolhosseini, S., Stierhof, Y. D., Hindennach, I. & Henning, U. Characterization of the helper proteins for the assembly of tail fibers of coliphages T4 and lambda. J. Bacteriol. 178, 6258–6265 (1996).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Conte, A. N. et al. DnaJ mediates phage sensing by the bacterial NLR-related protein bNACHT25. PLoS Biol. 23, e3003203 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Béchon, N. et al. Diversification of molecular pattern recognition in bacterial NLR-like proteins. Nat. Commun. 15, 9860 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Silas, S. et al. Activation of bacterial programmed cell death by phage inhibitors of host immunity. Mol. Cell 85, 1838–1851.e10 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462 (1997).

Article 
PubMed 
CAS 

Google Scholar
 

Patel, I. R. et al. Draft genome sequences of the Escherichia coli reference (ECOR) collection. Microbiol. Resour. Announc. 7, e01133-18 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Maffei, E. et al. Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection. PLoS Biol. 19, e3001424 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

Article 
PubMed 
CAS 

Google Scholar
 

Ledvina, H. E. et al. An E1–E2 fusion protein primes antiviral immune signalling in bacteria. Nature 616, 319–325 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Whiteley, A. T. et al. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature 567, 194–199 (2019).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Ferrieres, L. et al. Silent mischief: bacteriophage mu insertions contaminate products of Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. J. Bacteriol. 192, 6418–6427 (2010).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Chiang, S. L. & Rubin, E. J. Construction of a mariner-based transposon for epitope-tagging and genomic targeting. Gene 296, 179–185 (2002).

Article 
PubMed 
CAS 

Google Scholar
 

Zemansky, J. et al. Development of a mariner-based transposon and identification of Listeria monocytogenes determinants, including the peptidyl-prolyl isomerase PrsA2, that contribute to its hemolytic phenotype. J. Bacteriol. 191, 3950–3964 (2009).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Delcher, A. L., Harmon, D., Kasif, S., White, O. & Salzberg, S. L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 27, 4636–4641 (1999).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Delcher, A. L., Bratke, K. A., Powers, E. C. & Salzberg, S. L. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23, 673–679 (2007).

Article 
PubMed 
CAS 

Google Scholar
 

InterPro https://www.ebi.ac.uk/interpro (2025).

Paysan-Lafosse, T. et al. The Pfam protein families database: embracing AI/ML. Nucleic Acids Res. 53, D523–D534 (2025).

Article 
PubMed 

Google Scholar
 

MPI Bioinformatics Toolkit https://toolkit.tuebingen.mpg.de/(2025).

Zimmermann, L. et al. A completely reimplemented MPI Bioinformatics Toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).

Article 
PubMed 
CAS 

Google Scholar
 

Kalvari, I. et al. Non-coding RNA analysis using the Rfam Database. Curr. Protoc. Bioinforma. 62, e51 (2018).

Article 

Google Scholar
 

Holm, L. DALI and the persistence of protein shape. Protein Sci. 29, 128–140 (2020).

Article 
PubMed 
CAS 

Google Scholar
 

Poppleton, D. I. et al. Outer membrane proteome of Veillonella parvula: a diderm Firmicute of the human microbiome. Front. Microbiol. 8, 1215 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E. & Johnson, R. P. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol. Biol. 501, 69–76 (2009).

Article 
PubMed 
CAS 

Google Scholar
 

Jerabek-Willemsen, M., Wienken, C. J., Braun, D., Baaske, P. & Duhr, S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol. 9, 342–353 (2011).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Jarmoskaite, I., AlSadhan, I., Vaidyanathan, P. P. & Herschlag, D. How to measure and evaluate binding affinities. eLife 9, e57264 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Smith, R. M., Josephsen, J. & Szczelkun, M. D. An Mrr-family nuclease motif in the single polypeptide restriction-modification enzyme LlaGI. Nucleic Acids Res. 37, 7231–7238 (2009).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Smith, R. M., Diffin, F. M., Savery, N. J., Josephsen, J. & Szczelkun, M. D. DNA cleavage and methylation specificity of the single polypeptide restriction-modification enzyme LlaGI. Nucleic Acids Res. 37, 7206–7218 (2009).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Zeng, Z. et al. Base-modified nucleotides mediate immune signaling in bacteria. Science 388, eads6055 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Solovyev, V. & Salamov, A. in Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies 61–78 (Nova Science, 2011).