Allen, C. D. C., Okada, T., Tang, H. L. & Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).
Victora, G. D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010).
Manafi-Farid, R. et al. ImmunoPET: antibody-based PET imaging in solid tumors. Front. Med. 9, 916693 (2022).
Dewulf, J., Adhikari, K., Vangestel, C., Wyngaert, T. V. D. & Elvas, F. Development of antibody immuno-PET/SPECT radiopharmaceuticals for imaging of oncological disorders — an update. Cancers 12, 1868 (2020).
Gawne, P. J., Man, F., Blower, P. J. & de Rosales, T. M R. Direct cell radiolabeling for in vivo cell tracking with PET and SPECT imaging. Chem. Rev. 122, 10266–10318 (2022).
Dev, I. D., Puranik, A. D., Singh, B. & Prasad, V. Current and future perspectives of PDL1 PET and SPECT imaging. Semin. Nucl. Med. 54, 966–975 (2024).
Hegi-Johnson, F. et al. Imaging immunity in patients with cancer using positron emission tomography. npj Precis. Oncol. 6, 1–15 (2022).
van Rij, C. M. et al. Imaging of prostate cancer with immuno-PET and immuno-SPECT using a radiolabeled anti-EGP-1 monoclonal antibody. J. Nucl. Med. 52, 1601–1607 (2011).
Helfer, B. M. et al. Functional assessment of human dendritic cells labeled for in vivo 19F magnetic resonance imaging cell tracking. Cytotherapy 12, 238–250 (2010).
Ahrens, E. T., Flores, R., Xu, H. & Morel, P. A. In vivo imaging platform for tracking immunotherapeutic cells. Nat. Biotechnol. 23, 983–987 (2005).
Lin, E. & Alessio, A. What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? J. Cardiovasc. Comput. Tomogr. 3, 403–408 (2009).
Wang, L. V. & Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 13, 627–638 (2016).
Zhang, Y. et al. Activatable polymeric nanoprobe for near-infrared fluorescence and photoacoustic imaging of T lymphocytes. Angew. Chem. 133, 5986–5992 (2021).
Lin, L. & Wang, L. V. The emerging role of photoacoustic imaging in clinical oncology. Nat. Rev. Clin. Oncol. 19, 365–384 (2022).
Qin, Z. et al. Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping. Nat. Biotechnol. 40, 1663–1671 (2022).
Diao, S. et al. Biological imaging without autofluorescence in the second near-infrared region. Nano Res. 8, 3027–3034 (2015).
Wu, Y. et al. First clinical applications for the NIR-II imaging with ICG in microsurgery. Front. Bioeng. Biotechnol. 10, 1042546 (2022).
Wang, F. et al. In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors. Nat. Nanotechnol. 17, 653–660 (2022).
Baghdasaryan, A. et al. Phosphorylcholine-conjugated gold-molecular clusters improve signal for lymph node NIR-II fluorescence imaging in preclinical cancer models. Nat. Commun. 13, 5613 (2022).
Wang, F., Zhong, Y., Bruns, O., Liang, Y. & Dai, H. In vivo NIR-II fluorescence imaging for biology and medicine. Nat. Photon. 18, 535–547 (2024).
Bakker, G.-J. et al. Intravital deep-tumor single-beam 3-photon, 4-photon, and harmonic microscopy. eLife 11, e63776 (2022).
Wang, T., Chen, Y., Wang, B. & Wu, M. Recent progress of second near-infrared (NIR-II) fluorescence microscopy in bioimaging. Front. Physiol. 14, 1126805 (2023).
Deng, X. et al. In vivo deep-brain 2-photon fluorescent microscopy labeled with near-infrared dyes excited at the 1700 nm window. Anal. Chim. Acta 1255, 341118 (2023).
Pittet, M. J. & Weissleder, R. Intravital imaging. Cell 147, 983–991 (2011).
Welsher, K. et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4, 773–780 (2009).
Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016).
Yang, Q. et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J. Am. Chem. Soc. 140, 1715–1724 (2018).
Wang, L. et al. Benzobisthiadiazole-based small molecular near-infrared-II fluorophores: from molecular engineering to nanophototheranostics. ACS Nano 18, 4683–4703 (2024).
Wang, S. et al. Photostable small-molecule NIR-II fluorescent scaffolds that cross the blood–brain barrier for noninvasive brain imaging. J. Am. Chem. Soc. 144, 23668–23676 (2022).
Hu, X. et al. Crucial breakthrough of BODIPY-based NIR-II fluorescent emitters for advanced biomedical theranostics. Adv. Funct. Mater. 34, 2401325 (2024).
Wei, R. et al. Rigid and photostable shortwave infrared dye absorbing/emitting beyond 1200 nm for high-contrast multiplexed imaging. J. Am. Chem. Soc. 145, 12013–12022 (2023).
Meador, W. E. et al. Silicon-RosIndolizine fluorophores with shortwave infrared absorption and emission profiles enable in vivo fluorescence imaging. Nat. Chem. 16, 970–978 (2024).
Liu, D. et al. Xanthene-based NIR-II dyes for in vivo dynamic imaging of blood circulation. J. Am. Chem. Soc. 143, 17136–17143 (2021).
Ren, T.-B. et al. A general strategy for development of activatable NIR-II fluorescent probes for in vivo high-contrast bioimaging. Angew. Chem. Int. Ed. Engl. 60, 800–805 (2021).
Yan, K. et al. Ultra-photostable small-molecule dyes facilitate near-infrared biophotonics. Nat. Commun. 15, 2593 (2024).
Zhang, M. et al. Bright quantum dots emitting at ~1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc. Natl Acad. Sci. USA 115, 6590–6595 (2018).
Zhong, Y. & Dai, H. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems. Nano Res. 13, 1281–1294 (2020).
Chen, Y. et al. Shortwave infrared in vivo imaging with gold nanoclusters. Nano Lett. 17, 6330–6334 (2017).
Liu, H. et al. Atomic-precision gold clusters for NIR-II imaging. Adv. Mater. 31, 1901015 (2019).
Song, X. et al. A new class of NIR-II gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging. Angew. Chem. Int. Ed. Engl. 60, 1306–1312 (2021).
Ma, Z. et al. Cross-link-functionalized nanoparticles for rapid excretion in nanotheranostic applications. Angew. Chem. 132, 20733–20741 (2020).
Ren, F. et al. Shortwave-infrared-light-emitting probes for the in vivo tracking of cancer vaccines and the elicited immune responses. Nat. Biomed. Eng. 8, 726–739 (2023).
Wang, F. et al. Light-sheet microscopy in the near-infrared II window. Nat. Methods 16, 545–552 (2019).
Zhu, S., Tian, R., Antaris, A. L., Chen, X. & Dai, H. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater. 31, 1900321 (2019).
Jiang, Y. et al. A SARS-CoV-2 vaccine on an NIR-II/SWIR emitting nanoparticle platform. Sci. Adv. 11, eadp5539 (2025).
Ma, Z. et al. Near-Infrared IIb fluorescence imaging of vascular regeneration with dynamic tissue perfusion measurement and high spatial resolution. Adv. Funct. Mater. 28, 1803417 (2018).
Wang, F. et al. In vivo NIR-II structured-illumination light-sheet microscopy. Proc. Natl Acad. Sci. USA 118, e2023888118 (2021).
Shulman, Z. et al. T follicular helper cell dynamics in germinal centers. Science 341, 673–677 (2013).
Wahl, R. L., Dilsizian, V. & Palestro, C. J. At Last, 18F-FDG for inflammation and infection! J. Nucl. Med. 62, 1048–1049 (2021).
Brandes, R., Lang, F. & Schmidt, R. F. Physiologie des Menschen: mit Pathophysiologie (Springer-Verlag, 2011).
Chaplin, D. D. Overview of the immune response. J. Allergy Clin. Immunol. 125, S3–S23 (2010).
McDermott, A. M. Antimicrobial compounds in tears. Exp. Eye Res. 117, 53–61 (2013).
Smith, J. L. The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions. J. Food Prot. 66, 1292–1303 (2003).
Mihlan, M., Safaiyan, S., Stecher, M., Paterson, N. & Lämmermann, T. Surprises from intravital imaging of the innate immune response. Annu. Rev. Cell Dev. Biol. 38, 467–489 (2022).
Gordon, S. Phagocytosis: an immunobiologic process. Immunity 44, 463–475 (2016).
Wong, C. H. Y., Jenne, C. N., Petri, B., Chrobok, N. L. & Kubes, P. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat. Immunol. 14, 785–792 (2013).
Lee, W.-Y. et al. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat. Immunol. 11, 295–302 (2010).
Neupane, A. S. & Kubes, P. Imaging reveals novel innate immune responses in lung, liver, and beyond. Immunol. Rev. 306, 244–257 (2022).
Neupane, A. S. et al. Patrolling alveolar macrophages conceal bacteria from the immune system to maintain homeostasis. Cell 183, 110–125.e11 (2020).
Park, S. et al. Skin-resident immune cells actively coordinate their distribution with epidermal cells during homeostasis. Nat. Cell Biol. 23, 476–484 (2021).
Liarski, V. M. et al. Quantifying in situ adaptive immune cell cognate interactions in humans. Nat. Immunol. 20, 503–513 (2019).
Cyster, J. G. & Allen, C. D. C. B cell responses: cell interaction dynamics and decisions. Cell 177, 524–540 (2019).
Nakandakari-Higa, S. et al. Universal recording of immune cell interactions in vivo. Nature 627, 399–406 (2024).
Cohen, M. et al. The interaction of CD4+ helper T cells with dendritic cells shapes the tumor microenvironment and immune checkpoint blockade response. Nat. Cancer 3, 303–317 (2022).
Chatzileontiadou, D. S. M., Sloane, H., Nguyen, A. T., Gras, S. & Grant, E. J. The many faces of CD4+ T Cells: immunological and structural characteristics. Int. J. Mol. Sci. 22, 73 (2020).
Hay, Z. L. Z. & Slansky, J. E. Granzymes: the molecular executors of immune-mediated cytotoxicity. Int. J. Mol. Sci. 23, 1833 (2022).
Volpe, E., Sambucci, M., Battistini, L. & Borsellino, G. Fas–Fas ligand: checkpoint of T cell functions in multiple sclerosis. Front. Immunol. 7, 382 (2016).
Kaech, S. M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat. Immunol. 2, 415–422 (2001).
Cui, C. et al. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell 184, 6101–6118.e13 (2021).
Pantaleo, G., Correia, B., Fenwick, C., Joo, V. S. & Perez, L. Antibodies to combat viral infections: development strategies and progress. Nat. Rev. Drug Discov. 21, 676–696 (2022).
Lanzavecchia, A. & Sallusto, F. Progressive differentiation and selection of the fittest in the immune response. Nat. Rev. Immunol. 2, 982–987 (2002).
Tabatabaei, M. S. & Ahmed, M. Enzyme-linked immunosorbent assay (ELISA). Methods Mol. Biol. 2508, 115–134 (2022).
Kouwenhoven, M. et al. Enzyme-linked immunospot assays provide a sensitive tool for detection of cytokine secretion by monocytes. Clin. Diagn. Lab. Immunol. 8, 1248–1257 (2001).
Perfetto, S. P., Chattopadhyay, P. K. & Roederer, M. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 4, 648–655 (2004).
Mocellin, S. et al. Use of quantitative real-time PCR to determine immune cell density and cytokine gene profile in the tumor microenvironment. J. Immunol. Methods 280, 1–11 (2003).
Al-Lamki, R. S., Bradley, J. R. & Pober, J. S. Human organ culture: updating the approach to bridge the gap from in vitro to in vivo in inflammation, cancer, and stem cell biology. Front. Med. 4, 148 (2017).
Kanie, K. et al. Modeling of T cell-mediated autoimmune pituitary disease using human induced pluripotent stem cell-originated organoid. Nat. Commun. 16, 7900 (2025).
Poole, J. J. A. & Mostaço-Guidolin, L. B. Optical microscopy and the extracellular matrix structure: a review. Cells 10, 1760 (2021).
Balasubramanian, H., Hobson, C. M., Chew, T.-L. & Aaron, J. S. Imagining the future of optical microscopy: everything, everywhere, all at once. Commun. Biol. 6, 1–12 (2023).
Jonkman, J., Brown, C. M., Wright, G. D., Anderson, K. I. & North, A. J. Tutorial: guidance for quantitative confocal microscopy. Nat. Protoc. 15, 1585–1611 (2020).
Gu, Y. et al. Immune microniches shape intestinal Treg function. Nature 628, 854–862 (2024).
Eisenstein, S. et al. Myeloid derived suppressor cells as a vehicle for tumor-specific oncolytic viral therapy. Cancer Res. 73, 5003–5015 (2013).
Weist, M. R. et al. PET of adoptively transferred chimeric antigen receptor T cells with 89Zr-oxine. J. Nucl. Med. 59, 1531–1537 (2018).
Liu, J. et al. Ultrasound molecular imaging of acute cardiac transplantation rejection using nanobubbles targeted to T lymphocytes. Biomaterials 162, 200–207 (2018).
Lee, H. et al. Optimization of dendritic cell-mediated cytotoxic T-cell activation by tracking of dendritic cell migration using reporter gene imaging. Mol. Imaging Biol. 20, 398–406 (2018).
Marangoni, F. et al. Expansion of tumor-associated Treg cells upon disruption of a CTLA-4-dependent feedback loop. Cell 184, 3998–4015.e19 (2021).
Reinders, F. C. J. et al. Magnetic resonance guided elective neck irradiation targeting individual lymph nodes: a new concept. Phys. Imaging Radiat. Oncol. 20, 76–81 (2021).
Pai, A., Shetty, R., Hodis, B. & Chowdhury, Y. S. in StatPearls (StatPearls Publishing, 2024).
Mukhatov, A., Le, T.-A., Pham, T. T. & Do, T. D. A comprehensive review on magnetic imaging techniques for biomedical applications. Nano Sel. 4, 213–230 (2023).
Takahashi, M., Uematsu, H. & Hatabu, H. MR imaging at high magnetic fields. Eur. J. Radiol. 46, 45–52 (2003).
Ladd, M. E. et al. Pros and cons of ultra-high-field MRI/MRS for human application. Prog. Nucl. Magn. Reson. Spectrosc. 109, 1–50 (2018).
Ahrens, E. T. & Bulte, J. W. M. Tracking immune cells in vivo using magnetic resonance imaging. Nat. Rev. Immunol. 13, 755–763 (2013).
Mohanty, S. et al. Nanoparticle enhanced MRI can monitor macrophage response to CD47 mAb immunotherapy in osteosarcoma. Cell Death Dis. 10, 1–14 (2019).
Ahrens, E. T., Feili-Hariri, M., Xu, H., Genove, G. & Morel, P. A. Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn. Reson. Med. 49, 1006–1013 (2003).
Luchetti, A. et al. Monoclonal antibodies conjugated with superparamagnetic iron oxide particles allow magnetic resonance imaging detection of lymphocytes in the mouse brain. Mol. Imaging 11, 114–125 (2012).
Kadayakkara, D. K., Ranganathan, S., Young, W.-B. & Ahrens, E. T. Assaying macrophage activity in a murine model of inflammatory bowel disease using fluorine-19 MRI. Lab Invest. 92, 636–645 (2012).
Le Bihan, D. et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161, 401–407 (1986).
Bihan, D. L. et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168, 566 (1988).
Alauddin, M. M. Positron emission tomography (PET) imaging with 18F-based radiotracers. Am. J. Nucl. Med. Mol. Imaging 2, 55–76 (2011).
Markovic, S. N. et al. Non-invasive visualization of tumor infiltrating lymphocytes in patients with metastatic melanoma undergoing immune checkpoint inhibitor therapy: a pilot study. Oncotarget 9, 30268–30278 (2018).
Moses, W. W. Fundamental limits of spatial resolution in PET. Nucl. Instrum. Methods Phys. Res. A 648, S236–S240 (2011).
Krebs, S. et al. Antibody with infinite affinity for in vivo tracking of genetically engineered lymphocytes. J. Nucl. Med. 59, 1894–1900 (2018).
Minn, I. et al. Imaging CAR T cell therapy with PSMA-targeted positron emission tomography. Sci. Adv. 5, eaaw5096 (2019).
Salehi Farid, A. et al. CD45-PET is a robust, non-invasive tool for imaging inflammation. Nature 639, 214–224 (2025).
Kist de Ruijter, L. et al. Whole-body CD8+ T cell visualization before and during cancer immunotherapy: a phase 1/2 trial. Nat. Med. 28, 2601–2610 (2022).
Zhou, M. et al. [68Ga]Ga-AUNP-12 PET imaging to assess the PD-L1 status in preclinical and first-in-human study. Eur. J. Nucl. Med. Mol. Imaging 51, 369–379 (2024).
Zhou, M. et al. ImmunoPET imaging of LAG-3 expression in tumor microenvironment with 68Ga-labelled cyclic peptides tracers: from bench to bedside. J. Immunother. Cancer 12, e009153 (2024).
Wang, X. et al. Preclinical and exploratory human studies of novel 68Ga-labeled D-peptide antagonist for PET imaging of TIGIT expression in cancers. Eur. J. Nucl. Med. Mol. Imaging 49, 2584–2594 (2022).
Wilson, K. E., Wang, T. Y. & Willmann, J. K. Acoustic and photoacoustic molecular imaging of cancer. J. Nucl. Med. 54, 1851–1854 (2013).
Levy, J. et al. High-frequency ultrasound in clinical dermatology: a review. Ultrasound J. 13, 24 (2021).
Fiori, G. et al. A comparative study on depth of penetration measurements in diagnostic ultrasounds through the adaptive SNR threshold method. IEEE Trans. Instrum. Meas. 72, 1–8 (2023).
Zhou, S., Park, G., Lin, M., Yang, X. & Xu, S. Wearable ultrasound technology. Nat. Rev. Bioeng. 3, 835–854 (2025).
Sumaiya, K. & Kawathekar, S. S. Drawbacks of poor-quality ultrasound images and its enhancement. Int. J. Computer Appl. 175, 47–55 (2020).
Fournier, L., Taille, T. & Chauvierre, C. Microbubbles for human diagnosis and therapy. Biomaterials 294, 122025 (2023).
Weber, J., Beard, P. C. & Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 13, 639–650 (2016).
Lee, H. W. et al. Dual reporter gene imaging for tracking macrophage migration using the human sodium iodide symporter and an enhanced firefly luciferase in a murine inflammation model. Mol. Imaging Biol. 15, 703–712 (2013).
He, S., Li, J., Lyu, Y., Huang, J. & Pu, K. Near-Infrared fluorescent macromolecular reporters for real-time imaging and urinalysis of cancer immunotherapy. J. Am. Chem. Soc. 142, 7075–7082 (2020).
He, S., Cheng, P. & Pu, K. Activatable near-infrared probes for the detection of specific populations of tumour-infiltrating leukocytes in vivo and in urine. Nat. Biomed. Eng. 7, 281–297 (2023).
Hu, Y., Yu, J., Xu, M. & Pu, K. Bienzyme-locked activatable fluorescent probes for specific imaging of tumor-associated mast cells. J. Am. Chem. Soc. 146, 12656–12663 (2024).
Mrass, P. et al. Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J. Exp. Med. 203, 2749 (2006).
Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37–R61 (2013).
Wang, X. et al. Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography. J. Biomed. Opt. 11, 041106 (2006).
Diao, S. et al. Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew. Chem. Int. Ed. 54, 14758–14762 (2015).
Arús, B. A. et al. Shortwave infrared fluorescence imaging of peripheral organs in awake and freely moving mice. Front. Neurosci. 17, 1135494 (2023).
Wang, X. et al. An emerging toolkit of Ho3+ sensitized lanthanide nanocrystals with NIR-II excitation and emission for in vivo bioimaging. J. Am. Chem. Soc. 147, 2182–2192 (2025).
Dodt, H.-U. et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4, 331–336 (2007).
Liu, P. et al. Airy beam assisted NIR-II light-sheet microscopy. Nano Today 47, 101628 (2022).
Xia, F. et al. Short-wave infrared confocal fluorescence imaging of deep mouse brain with a superconducting nanowire single-photon detector. ACS Photon. 8, 2800–2810 (2021).
Pinkard, H. et al. Learned adaptive multiphoton illumination microscopy for large-scale immune response imaging. Nat. Commun. 12, 1916 (2021).
Gu, M., Gan, X., Kisteman, A. & Xu, M. G. Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media. Appl. Phys. Lett. 77, 1551–1553 (2000).
Tong, S. et al. In vivo deep-brain 3- and 4-photon fluorescence imaging of subcortical structures labeled by quantum dots excited at the 2200 nm window. ACS Nano 17, 3686–3695 (2023).
Bueno, J. M., Ávila, F. J. & Artal, P. Comparing the performance of a femto fiber-based laser and a Ti:sapphire used for multiphoton microscopy applications. Appl. Opt. 58, 3830–3835 (2019).
Song, S. et al. Molecular engineering of AIE luminogens for NIR-II/IIb bioimaging and surgical navigation of lymph nodes. Matter 5, 2847–2863 (2022).
Choe, K. et al. Intravital three-photon microscopy allows visualization over the entire depth of mouse lymph nodes. Nat. Immunol. 23, 330–340 (2022).
Zhong, Y. et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 37, 1322–1331 (2019).
Hor, J. L. et al. Spatiotemporally distinct interactions with dendritic cell subsets facilitates CD4+ and CD8+ T cell activation to localized viral infection. Immunity 43, 554–565 (2015).
Mi, C. et al. Bone disease imaging through the near-infrared-II window. Nat. Commun. 14, 6287 (2023).
Song, Y. et al. Advancements in noninvasive techniques for transplant rejection: from biomarker detection to molecular imaging. J. Transl. Med. 23, 147 (2025).
Hu, Z. et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng. 4, 259–271 (2020).
Ma, Z., Wang, F., Wang, W., Zhong, Y. & Dai, H. Deep learning for in vivo near-infrared imaging. Proc. Natl Acad. Sci. USA 118, e2021446118 (2021).
Zidane, M. et al. A review on deep learning applications in highly multiplexed tissue imaging data analysis. Front. Bioinform. 3, 1159381 (2023).
Ou, Z. et al. Achieving optical transparency in live animals with absorbing molecules. Science 385, 6713 (2024).
Kim, I. et al. Real-time, in situ imaging of macrophages via phase-change peptide nanoemulsions. Small 19, 2301673 (2023).
Jiang, Y., Hou, X., Zhao, X., Jing, J. & Sun, L. Tracking adoptive natural killer cells via ultrasound imaging assisted with nanobubbles. Acta Biomater. 169, 542–555 (2023).
Bourdeau, R. W. et al. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature 553, 86–90 (2018).
Xu, Y. et al. Superparamagnetic MRI probes for in vivo tracking of dendritic cell migration with a clinical 3 T scanner. Biomaterials 58, 63–71 (2015).
Mayer, K. E. et al. T-cell functionality testing is highly relevant to developing novel immuno-tracers monitoring T cells in the context of immunotherapies and revealed CD7 as an attractive target. Theranostics 8, 6070–6087 (2018).
Yoon, J. T., Longtine, M. S., Marquez-Nostra, B. V. & Wahl, R. L. Evaluation of next-generation anti-CD20 antibodies labeled with 89Zr in human lymphoma xenografts. J. Nucl. Med. 59, 1219–1224 (2018).
Pandit-Taskar, N. et al. First-in-humans imaging with 89Zr-Df-IAB22M2C anti-CD8 minibody in patients with solid malignancies: preliminary pharmacokinetics, biodistribution, and lesion targeting. J. Nucl. Med. 61, 512–519 (2020).
Emami-Shahri, N. et al. Clinically compliant spatial and temporal imaging of chimeric antigen receptor T-cells. Nat. Commun. 9, 1081 (2018).
Garcia, J. et al. Naturally occurring T cell mutations enhance engineered T cell therapies. Nature 626, 626–634 (2024).
Antaris, A. L. et al. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat. Commun. 8, 15269 (2017).
Deng, G. et al. Near-infrared fluorescence imaging in the largely unexplored window of 900–1,000 nm. Theranostics 8, 4116–4128 (2018).
Mendes, L. S. T., Du, M.-Q., Matutes, E. & Wotherspoon, A. Splenic marginal zone lymphoma: a review of the clinical presentation, pathology, molecular biology, and management. Blood Lymph. Cancer Target Ther. 4, 29–38 (2014).
Leitgeb, R. A. & Baumann, B. Multimodal optical medical imaging concepts based on optical coherence tomography. Front. Phys. 6, 114 (2018).
Walter, A. et al. Correlated multimodal imaging in life sciences: expanding the biomedical horizon. Front. Phys. 8, 47 (2020).
Pogue, B. W., Leblond, F., Krishnaswamy, V. & Paulsen, K. D. Radiologic and near-infrared/optical spectroscopic imaging: where is the synergy? Am. J. Roentgenol. 195, 321–332 (2010).
Yao, J. & Wang, L. V. Sensitivity of photoacoustic microscopy. Photoacoustics 2, 87–101 (2014).
Huysmans, H. et al. Expression kinetics and innate immune response after electroporation and LNP-mediated delivery of a self-amplifying mRNA in the skin. Mol. Ther. Nucleic Acids 17, 867–878 (2019).
Zhang, F. et al. Preclinical lymphatic imaging. Mol. Imaging Biol. 13, 599–612 (2011).
Ying, M. & Ahuja, A. T. Ultrasound of neck lymph nodes: how to do it and how do they look? Radiography 12, 105–117 (2006).
Goldinger, S. M. et al. Nano-particle vaccination combined with TLR-7 and -9 ligands triggers memory and effector CD8+ T-cell responses in melanoma patients. Eur. J. Immunol. 42, 3049–3061 (2012).
Hong, G. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photon. 8, 723–730 (2014).
Zhou, B., Tao, L., Tsang, Y. H., Jin, W. & Pun, E. Y.-B. Superbroadband near-infrared emission and energy transfer in Pr3+–Er3+ codoped fluorotellurite glasses. Opt. Express 20, 12205–12211 (2012).
Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018).
Hong, G. et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat. Commun. 5, 4206 (2014).
Kaur, R., Kruse, N. A., Smith, C., Hammer, N. I. & Delcamp, J. H. Comparison of vinyldimethylaniline and indolizine donor groups on Si-substituted xanthene core shortwave infrared fluorophores. ChemPhotoChem 8, e202400023 (2024).
Loganathan, S. et al. Ultrashort pulsed laser-assisted direct restoration of human enamel using 3D printable biocomposite. Adv. Mater. Technol. 10, 2401362 (2025).
Ganem, J. & Bowman, S. R. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources. Nanoscale Res. Lett. 8, 455 (2013).
Dai, H. et al. Small molecular NIR-II fluorophores for cancer phototheranostics. Innovation 2, 100082 (2021).
Yeroslavsky, G. et al. Photostabilization of indocyanine green dye by energy transfer in phospholipid-PEG micelles. J. Photopolym. Sci. Technol. 32, 115–121 (2019).
Mar’ina, U. A., Vorob’ev, V. A. & Mar’in, A. P. CaSnO3: Yb3+, Er3+, Ho3+ system synthesis and study of its luminescence under IR excitation. Mod. Electron. Mater. 4, 71–75 (2018).