Bjørndal, T., Dey, M. &Tusvik, A. Economic analysis of the contributions of aquaculture to future food security. Aquaculture. 578, 740071 (2024).
FAO. Food and Agriculture Organization of the United Nations; The State of World Fisheries and Aquaculture (2020).
Yang, Y., Wu, Z., Ren, Y., Zhou, Z., Wang, W.X., Huang, Y. & Shu, X. Improving heat resistance of nile tilapia (Oreochromis niloticus) by dietary zinc supplementation. Aquac. Nutr. 6323789 (2022).
Ng, W. K. & Romano, N. A review of the nutrition and feeding management of farmed tilapia throughout the culture cycle. Rev. Aquac. 5, 220–254 (2013).
Zhang, H., Liu, Y., Fu, Z., Gao, S., Hong, H., Shu, R. & Tan, Y. Comparison of nutritional and flavour attributes of Raw and cooked fillets from red tilapia (Oreochromis sp.) cultured in ponds and containers. Aquac. Res. 53, 3865 (2022).
El-Sayed AFM. Tilapia Culture 2nd edn, 348. In.: Elsevier/Academic Press (2020).
Dawood, M. A., Eweedah, N. M., Elbialy, Z. I., & Abdelhamid, A. I. Dietary sodium butyrate ameliorated the blood stress biomarkers, heat shock proteins, and immune response of nile tilapia (Oreochromis niloticus) exposed to heat stress. J. Therm. Biol. 88, 102500 (2020).
Bagath, M., Krishnan, G., Devaraj, C., Rashamol, V. P., Pragna, P., Lees, A. M., & Sejian, V. The impact of heat stress on the immune system in dairy cattle: A review. Res. J. Vet. Sci. 126, 94–102 (2019).
dela Cruz MB. Body darkening as a thermal stress indicator for nile tilapia (Oreochromis niloticus L.). Int. J. Agric. Technol. 16, 611:618 (2020).
Musa, N. et al. Prominent vulnerability of red hybrid tilapia (Oreochromis spp.) liver to heat stress-induced oxidative damage. Int. Aquat. Res. 13(2),109–118 (2021).
Jinagool, P., Wipassa, V., Chaiyasing, R., Chukanhom, K., & Aengwanich, W. Effect of increasing ambient temperature on physiological changes, oxidative stress, nitric oxide, total antioxidant power, and mitochondrial activity of nile tilapia (Oreochromis niloticus Linn.). Aquaculture. 589, 741017 (2024).
Mridul, M. M. I., Zeehad, M. S. K., Aziz, D., Salin, K. R., Hurwood, D. A., & Rahi, M. L. Temperature-induced biological alterations in the major carp, Rohu (Labeo rohita): assessing potential effects of climate change on aquaculture production. Aquac. Rep. 35, 101954 (2024).
Roessig, J. M., Woodley, C. M., Cech Jr, J. J., & Hansen, L. J. Effects of global climate change on marine and estuarine fishes and fisheries. Rev. Fish Biol. Fisher. 14, 251–275 (2004).
Sokolova, I. M., & Lannig, G. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Clim. Res. 37(2–3),181–201 (2008).
Pörtner, H. O., & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science. 315(5808), 95–97 (2007).
Ibáñez, A., Garrido-Chamorro, S., & Barreiro, C. Microorganisms and climate change: a not so invisible effect. Microbiol. Res. 14(3), 918–947 (2023).
Combe, M., Reverter, M., Caruso, D., Pepey, E., & Gozlan, R. E. Impact of global warming on the severity of viral diseases. A potentially alarming threat to sustainable aquaculture worldwide. Microorganisms. 11(4), 1049 (2023).
Sherif, A. H., Farag, E. A., & Mahmoud, A. E. Temperature fluctuation alters immuno-antioxidant response and enhances the susceptibility of Oreochromis niloticus to Aeromonas hydrophila challenge. Aquac. Int. 32(2), 2171–2184 (2024).
Imsland, A. K., Foss, A., Sparboe, L. O., & Sigurdsson, S. The effect of temperature and fish size on growth and feed efficiency ratio of juvenile spotted wolffish Anarhichas minor. J. Fish Biol. 68(4):1107–1122 (2006).
Handeland, S. O., Imsland, A. K., & Stefansson, S. O. The effect of temperature and fish size on growth, feed intake, food conversion efficiency, and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture. 283 (1–4), 36–42 (2008).
Chu GyoMoon, C. G., & Song YoungMin, S. Y. Growth performance, blood characteristics and immune responses of fattening pigs in different seasons. Asian J. Anim. Vet. Adv. 8, 691:702 (2013).
Zhang, C. N. et al. The effects of fructooligosaccharide on the immune response, antioxidant capability and HSP70 and HSP90 expressions in blunt snout Bream (Megalobrama amblycephala Yih) under high heat stress. Aquaculture. 433, 458–466 (2014).
Teimouri, M., Yeganeh, S., Mianji, G. R., Najafi, M., & Mahjoub, S.The effect of Spirulina platensis meal on antioxidant gene expression, total antioxidant capacity, and lipid peroxidation of rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem. 45, 977–986 (2019).
Sharawy, Z. Z., Ashour, M., Abbas, E., Ashry, O., Helal, M., Nazmi, H., … Goda, A. Effects of dietary marine microalgae, Tetraselmis suecica, on production, gene expression, protein markers and bacterial count of Pacific white shrimp Litopenaeus vannamei. Aquac. Res. 51(6), 2216–2228 (2020).
Yeganeh, S., Teimouri, M., & Amirkolaie, A. K. Dietary effects of Spirulina platensis on hematological and serum biochemical parameters of rainbow trout (Oncorhynchus mykiss). Res. J. Vet. Sci. 101,84–88 (2015).
Kiadaliri, M., Firouzbakhsh, F., & Deldar, H. Effects of feeding with red algae (Laurencia caspica) hydroalcoholic extract on antioxidant defense, immune responses, and immune gene expression of kidney in rainbow trout (Oncorhynchus mykiss) infected with Aeromonas hydrophila. Aquaculture. 526,735361 (2020).
Adel, M., Yeganeh, S., Dadar, M., Sakai, M., & Dawood, M. A. Effects of dietary Spirulina platensis on growth performance, humoral and mucosal immune responses, and disease resistance in juvenile great sturgeon (Huso Huso Linnaeus, 1754). Fish Shellfish Immunol. 56,436–444 (2016).
Abdelkhalek, N. K. et al. Protective role of dietary Spirulina platensis against diazinon-induced oxidative damage in nile tilapia; Oreochromis niloticus. Environ. Toxicol. Pharmacol. 54, 99–104 (2017).
Sheikhzadeh, N., Mousavi, S., Hamidian, G., Firouzamandi, M., Oushani, A. K., & Mardani, K. Role of dietary Spirulina platensis in improving mucosal immune responses and disease resistance of rainbow trout (Oncorhynchus mykiss). Aquaculture. 510,1–8 (2019).
Ibrahim, A. E., & Abdel-Daim, M. M. Modulating effects of Spirulina platensis against tilmicosin-induced cardiotoxicity in mice. Cell J. 17, 137 (2015).
Wu, Q., Liu, L., Miron, A., Klímová, B., Wan, D., & Kuča, K. The antioxidant, immunomodulatory, and anti-inflammatory activities of spirulina: an overview. Arch. Toxicol. 90, 1817–1840 (2016).
Hoseini, S. M., Khosravi-Darani, K., & Mozafari, M. R. Nutritional and medical applications of spirulina microalgae. Mini-Rev. Med. Chem. 13(8),1231–1237 (2013).
Abdo, S. E. et al. Combined dietary Spirulina platensis and citrus Limon essential oil enhances the Growth, Immunity, antioxidant capacity and intestinal health of nile tilapia. Vet. Sci. 11(10), 474 (2024).
Liu, C. et al. Effects of dietary Arthrospira platensis supplementation on the growth performance, antioxidation and immune related-gene expression in yellow catfish (Pelteobagrus fulvidraco). Aquac. Rep. 17,100297 (2020).
Yu, W., Wen, G., Lin, H., Yang, Y., Huang, X., Zhou, C., … Li, T. Effects of dietary Spirulina platensis on growth performance, hematological and serum biochemical parameters, hepatic antioxidant status, immune responses and disease resistance of coral trout Plectropomus Leopardus (Lacepede, 1802). Fish Shellfish Immunol. 74, 649–655 (2018).
Eleiwa, N. Z., Elsayed, A. S., Said, E. N., Metwally, M. M., & Abd-Elhakim, Y. M. Di (2-ethylhexyl) phthalate alters neurobehavioral responses and oxidative status, architecture, and GFAP and BDNF signaling in juvenile rat’s brain: Protective role of Coenzyme10. Food Chem. Toxicol. 184, 114372 (2024).
Yubero-Serrano, E. M., Garcia-Rios, A., Delgado-Lista, J., Pérez-Martinez, P., Camargo, A., Perez-Jimenez, F., & Lopez-Miranda, J. Chapter 16 – Coenzyme Q10 as an antioxidant in the elderly. In: Aging (Second Edition). edn. Edited by Preedy VR, Patel VB: Academic Press; 165–171(2020).
El Basuini, M. F. et al. The influence of dietary coenzyme Q10 and vitamin C on the growth rate, immunity, oxidative-related genes, and the resistance against Streptococcus agalactiae of Nile tilapia (Oreochromis niloticus). Aquaculture. 531,735862 (2021).
Khalil, A. A., Abd-Elhakim, Y. M., Said, E. N., Moselhy, A. A., Abu-Elsaoud, A. M., & El-Houseiny, W. Milk Thistle and co-enzyme Q10 fortified diets lessen the nickel chloride-induced neurotoxic and neurobehavioral impairments in Oreochromis niloticus via regulating the oxidative stress response, acetylcholinesterase activity, and brain nickel content. Aquaculture. 553,738102 (2022).
El-Houseiny, W., Abd El-Hakim, Y. M., Metwally, M. M., Ghfar, S. S. A., & Khalil, A. A. The single or combined Silybum Marianum and co-enzyme Q10 role in alleviating fluoride-induced impaired growth, immune suppression, oxidative stress, histological alterations, and reduced resistance to Aeromonas sobria in African catfish (Clarias gariepinus). Aquaculture. 548,737693 (2022).
Aramli, M. S., Moghanlou, K. S., & Imani, A. Effect of dietary antioxidant supplements (selenium forms, alpha-tocopherol, and coenzyme Q10) on growth performance, immunity, and physiological responses in rainbow trout (Oncorhynchus mykiss) using orthogonal array design. Fish Shellfish Immunol. 134,108615 (2023).
El Basuini, M. F. et al. Dietary co-enzyme Q10 boosted the growth performance,antioxidative capacity, immune responses, and intestinal and hepatic histomorphology of grey mullet (Liza ramada). Aquac. Rep. 36,102147 (2024).
El Basuini, M. F., Shahin, S. A., Eldenary, M. E., Elshora, S. M., Dawood, M. A., & Mourad, M. M. Growth variables, feed efficacy, survival rate, and antioxidant capacity of European Seabass (Dicentrarchus labrax L.) larvae treated with coenzyme Q10 or lipoic acid. Aquac. Rep. 27,101373 (2022).
Huang, Y. et al. The influence of dietary Coenzyme Q10 on growth performance, antioxidant capacity and resistance against Aeromonas hydrophila of juvenile European eel (Anguilla anguilla). Fish Shellfish Immunol. 138,108834 (2023).
El-Houseiny, W. et al. Alleviative effects of dietary Silybum marianum and co-enzyme Q10 on waterborne nickel-induced impaired growth, immunosuppression, tissue damage,immune-related genes dysregulation, and reduced resistance to Pseudomonas aeruginosa in Oreochromis niloticus. Aquac. Rep. 26, 101308 (2022).
Mourad, M. M., Shahin, S. A., El-Ratel, I. T., & El Basuini, M. F. Effect of treating eggs with coenzyme Q10 (CoQ10) on growth variables, histomorphometry, and antioxidant capacity in red tilapia (Oreochromis aureus× Oreochromis mossambicus) larvae. Animals. 12(17), 2219 (2022).
Goudarzi, Z., Hashemiravan, M., & Sohrabvandi, S. Production of functional orange juice by the addition of coenzyme Q10. Arch. adv. Biosci. 5(1), (2014).
Shukla, S., & Dubey, K. K. CoQ10 a super-vitamin: Review on application and biosynthesis. 3 Biotech. 8(5), 249 (2018).
Elabd, H., Mahboub, H.H., Salem, S.M., Abdelwahab, A.M., Alwutayd, K.M., Shaalan, M., Ismail, S.H., Abdelfattah, A.M., Khalid, A., Mansour, A.T. & Hamed, H.S. Nano-curcumin/chitosan modulates growth, biochemical, immune, and antioxidative profiles, and the expression of related genes in nile tilapia, Oreochromis niloticus. Fishes. 8 (7), 333 (2023).
Ahmed, S. A. et al. Chitosan-grape seed oil nanoemulsion enriched diet promotes performance, antioxidant-immune metrics and modifies immune-gene action and morphological architecture in Nile tilapia against Aeromonas veronii. Aquac. Rep. 41, 102697 (2025).
Liu, Y. et al. Effects of Chronic Heat Stress on Growth, Apoptosis, Antioxidant Enzymes, Transcriptomic Profiles, and Immune-Related Genes of Hong Kong Catfish (Clarias fuscus). Animals. 14(7), 1006 (2024).
Guo, S. et al. Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: Size, surface charge and pro-hydrophobics.J. nanobiotechnol. 19(1), 32 (2021).
Ni, J., Ren, L., Ma, Y., Xiong, H., & Jian, W. Selenium nanoparticles coated with polysaccharide-protein complexes from abalone viscera improve growth and enhance resistance to diseases and hypoxic stress in juvenile nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 134, 108624 (2023).
Dar, A. H., Rashid, N., Majid, I., Hussain, S., & Dar, M. A. Nanotechnology interventions in aquaculture and seafood preservation. Crit. Rev. Food Sci. Nutr. 60(11), 1912–1921 (2020).
Rossi, A., Bacchetta, C., & Cazenave, J. Effect of thermal stress on metabolic and oxidative stress biomarkers of Hoplosternum Littorale (Teleostei, Callichthyidae). Ecol. Indic. 79, 361–370 (2017).
Hassan, H. A., & Al-Rawi, M. M. Grape seeds Proanthocyanidin extract as a hepatic-reno-protective agent against gibberellic acid-induced oxidative stress and cellular alterations. Cytotechnology. 65, 567–576 (2013).
Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food Chem. 194,1266–1274 (2016).
Velasquez, S. F., Chan, M. A., Abisado, R. G., Traifalgar, R. F. M., Tayamen, M. M., Maliwat, G. C. F., & Ragaza, J. A. Dietary spirulina (Arthrospira platensis) replacement enhances performance of juvenile nile tilapia (Oreochromis niloticus). J. Appl. Phycol. 28,1023–1030 (2016).
Abdel-Latif, H. M., & Khalil, R. H. Evaluation of two phytobiotics, Spirulina platensis and Origanum vulgare extract, on growth, serum antioxidant activities and resistance of nile tilapia (Oreochromis niloticus) to pathogenic Vibrio alginolyticus. Int. J. Fish. Aquat. Stud. 250, 250–255 (2014).
El Basuini, M. F. et al. Assessing the effectiveness of CoQ10 dietary supplementation on growth performance, digestive enzymes, blood health, immune response, and oxidative-related genes expression of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 98, 420–428 (2020).
Ayyat, M. S., Elsayed, M. A. M., Ayyat, A. M. N., Abdel-Rahman, G., Al-Sagheer, A. A., & Ahmed, N. H. Reversing the detrimental effects of high stocking density in Oreochromis niloticus juveniles using coenzyme Q10 and l-carnitine dietary supplementation. Aquaculture. 592, 741261 (2024).
NRC. Nutrient requirements of fish and shrimp: National academies press. (2011).
Ibrahim, D. et al. Liposome encapsulating pine bark extract in Nile tilapia: Targeting interrelated immune and antioxidant defense to combat coinfection with Aeromonas hydrophila and Enterococcus faecalis. Fish Shellfish Immunol. 156, 110031 (2025).
Neiffer, D. L., & Stamper, M. A. Fish sedation, anesthesia, analgesia, and euthanasia: considerations, methods, and types of drugs. ILAR J. 50(4), 343–360 (2009).
Tran-Duy, A., Schrama, J. W., van Dam, A. A., & Verreth, J. A. Effects of oxygen concentration and body weight on maximum feed intake, growth and hematological parameters of nile tilapia, Oreochromis niloticus. Aquaculture. 275 (1–4),152–162 (2008).
Rahman, A. N. A. et al. Chitosan-Ocimum basilicum nanocomposite as a dietary additive in Oreochromis niloticus: Effects on immune-antioxidant response, head kidney gene expression, intestinal architecture, and growth. Fish Shellfish Immunol. 128, 425–435 (2022).
Habig, W. H., Pabst, M. J., & Jakoby, W. B.Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. Biol. Chem. 249(22), 7130–7139 (1974).
Anderson, D. P., & Siwicki, A. K. Basic hematology and serology for fish health programs (1995).
Kumari, J., & Sahoo, P. K. Effects of cyclophosphamide on the immune system and disease resistance of Asian catfish Clarias Batrachus. Fish Shellfish Immunol. 19(4), 307–316 (2005).
Kawahara, E., Ueda, T., & Nomura, S. In vitro phagocytic activity of white-spotted Char blood cells after injection with Aeromonas salmonicida extracellular products. Fish Pathol. 26(4), 213–214 (1991).
Demers, N. E., & Bayne, C. J. The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Dev. Comp. Immunol. 21(4), 363–373 (1997).
Wood, S. M., & White, A. G. A micro method for the Estimation of killing and phagocytosis of Candida albicans by human leucocytes. J. Immunol. Methods. 20, 43–52 (1978).
Ellis AE. Lysozyme assays. Techniques in fish immunology/SOS Pub (1990).
Montgomery, H., & Dymock, J. F. Determination of nitrite in water, Royal Soc Chemistry Thomas Graham House. Science Park, Milton Rd, Cambridge 414 (1961).
Suvarna KS, Layton C, Bancroft JD: Bancroft’s theory and practice of histological techniques: Elsevier health sciences (2018).
Abdel Rahman, A. N. et al. Efficacy of the dietary Malva parviflora leaves in modulating immune-antioxidant functions, resistance to Candida albicans and Streptococcus agalactiae infection, digestive/absorptive capacity, and growth of Nile tilapia (Oreochromis niloticus). Aquac. Int. 32(6), 8229–8247 (2024).
Reda, R. M., El-Murr, A., Abdel-Basset, N. A., Metwally, M. M., & Ibrahim, R. E. Infection dynamics of Shewanella spp. In nile tilapia under varied water temperatures: A hematological, biochemical, antioxidant-immune analysis, and histopathological alterations. Fish Shellfish Immunol. 149, 109588 (2024).
Islam, S. M. et al. Elevated temperature affects growth and hemato‐biochemical parameters, inducing morphological abnormalities of erythrocytes in Nile tilapia Oreochromis niloticus. Aquac. Res. 51(10), 4361–4371 (2020).
Islam, M. A., Uddin, M. H., Uddin, M. J., & Shahjahan, M. Temperature changes influenced the growth performance and physiological functions of Thai Pangas Pangasianodon hypophthalmus. Aquac. Rep. 13, 100179 (2019).
Dawood, M. A. Nutritional immunity of fish intestines. Important insights for sustainable aquaculture. Rev. Aquac. 13(1), 642–663 (2021).
Hassan, G.K., Mahmoud, W.H., Al-sayed, A., Ismail, S.H., El-Sherif, A.A. & Abd El Wahab, S.M. Multi-functional of TiO2@ ag core–shell nanostructure to prevent hydrogen sulfide formation during anaerobic digestion of sewage sludge with boosting of bio-CH4 production. Fuel. 333, 126608 (2023).
Salem, M.A., Aborehab, N.M., Abdelhafez, M.M., Ismail, S.H., Maurice, N.W., Azzam, M.A., Alseekh, S., Fernie, A.R., Salama, M.M. & Ezzat, S.M. Anti-obesity effect of a tea mixture nano-formulation on rats occurs via the upregulation of AMP-activated protein kinase/sirtuin-1/glucose transporter type 4 and peroxisome proliferator-activated receptor gamma pathways. Metabolites. 13(7), 871 (2023).
Hassan, R.R.A., Hassan, H.M., Mohamed, Y.A., Ismail, M.E., Farid, Y., Mohamed, H., Ismail, S.H., Salem, M.Z. & Abdel-Hamied, M. ZnO, TiO2 and Fe3O4/Carbopol hybrid nanogels for the cleaner process of paper manuscripts from dust stains and soil remains. Herit. Sci. 11(1), 1–26 (2023).
Al-Gethami, W., Al-Qasmi, N., Ismail, S.H. & Sadek, A.H. QCM-based MgFe2O4@ CaAlg nanocomposite as a fast response nanosensor for real-time detection of methylene blue dye. Nanomaterials. 13(1), 97 (2022).
Katowah, D.F. & Ismail, S.H. High-sensitivity QCM sensor based on O-Toluidine-Chitosan-Decorated ZnFe2O4 nanoparticles for Ultra-trace Pb2⁺ detection in aqueous media. J. Inorg. Organomet. Polym. Mater. 1–18 (2025). https://doi.org/10.1007/s10904-025-03875-5.
Gharib, A., Maher, M.A., Ismail, S.H. & Mohamed, G.G. Effect titanium dioxide/paraloid B. 72 nanocomposite coating on protection of treated Cu-Zn archaeological alloys. Int. J. Archaeol. 7(2), 47 (2019).
Ibrahim, R.E., Hagag, I.T., Alkhamis, Y., Mansour, A.T., Hassanien, H.A., Abbas, A., Alhajji, A.H., Ismail, S.H., Khamis, T. & Rahman, A.N.A. The mitigating potential of Chitosan nanogel composite against Shewanella spp.(9DTL) infection in Oreochromis niloticus: Immune-antioxidant traits, autophagy, Endoplasmic reticulum stress, and expression of piscidin 4 and Hepcidin antimicrobial peptide 1. Fish Shellfish Immunol. 110639 (2025).
Mahboub, H.H., Rahman, A.N.A., Elazab, S.T., Abdelwarith, A.A., Younis, E.M., Shaalan, M., Aziz, E.K., Sobh, M.S., Yousefi, M., Ismail, S.H. & Davies, S.J. Nano-chitosan hydrogel alleviates Candida albicans-induced health alterations in nile tilapia (Oreochromis niloticus): antioxidant response, neuro-behaviors, hepato-renal functions, and histopathological investigation. BMC Vet. Res. 21(1), 159 (2025).
Wang, J., Lu, D. Q., Jiang, B., Mo, X. B., Du, J. J., & Li, A. X. Influence of temperature on the vaccine efficacy against Streptococcus agalactiae in nile tilapia (Oreochromis niloticus). Aquaculture. 521, 734943 (2020).
Wiles, S. C., Bertram, M. G., Martin, J. M., Tan, H., Lehtonen, T. K., & Wong, B. B. Long-term pharmaceutical contamination and temperature stress disrupt fish behavior. Environ. Sci. Technol. 54(13), 8072–8082 (2020).
Zafalon-Silva, B. et al. Erythrocyte nuclear abnormalities and leukocyte profile in the Antarctic fish Notothenia coriiceps after exposure to short-and long-term heat stress. Polar Biol. 40,1755–1760 (2017).
Islam, M. J., Slater, M. J., Bögner, M., Zeytin, S., & Kunzmann, A. Extreme ambient temperature effects in European seabass, Dicentrarchus labrax: growth performance and hemato-biochemical parameters. Aquaculture. 522, 735093 (2020).
Abdelnour, S. A. et al. The beneficial impacts of dietary phycocyanin supplementation on growing rabbits under high ambient temperature. Ital. J. Anim.Sci. 19(1), 1046–1056 (2020).
Zhang, F., Man, Y. B., Mo, W. Y., & Wong, M. H. Application of spirulina in aquaculture: A review on wastewater treatment and fish growth. Rev. Aquac. 12(2), 582–599 (2020).
Tibbetts, S. M., MacPherson, M. J., Park, K. C., Melanson, R. J., & Patelakis, S. J. Composition and apparent digestibility coefficients of essential nutrients and energy of Cyanobacterium meal produced from spirulina (Arthrospira platensis) for freshwater-phase Atlantic salmon (Salmo Salar L.) pre-smolts. Algal Res. 70, 103017 (2023).
Elabd, H., Wang, H. P., Shaheen, A., & Matter, A. Nano spirulina dietary supplementation augments growth, antioxidative and immunological reactions, digestion, and protection of nile tilapia, Oreochromis niloticus, against Aeromonas veronii and some physical stressors. Fish Physiol. Biochem. 46, 2143–2155 (2020).
Mathur, M. Bioactive molecules of. a food supplement. In: Bioactive Molecules in food. edn.: Springer. 1621–1642 (2019).
Okasha, L. A., Abdellatif, J. I., Abd-Elmegeed, O. H., & Sherif, A. H. Overview on the role of dietary Spirulina platensis on immune responses against Edwardsiellosis among Oreochromis niloticus fish farms. BMC Vet. Res. 20(1), 290 (2024).
Teimouri, M., Amirkolaie, A. K., & Yeganeh, S. The effects of Spirulina platensis meal as a feed supplement on growth performance and pigmentation of rainbow trout (Oncorhynchus mykiss). Aquaculture. 396, 14–19 (. 2013).
Linnane, A. W., Kios, M., & Vitetta, L. Coenzyme Q10–Its role as a prooxidant in the formation of superoxide anion/hydrogen peroxide and the regulation of the metabolome. Mitochondrion. 7, S51-S61 (2007).
Bentinger, M., Brismar, K., & Dallner, G.The antioxidant role of coenzyme Q. Mitochondrion. 7, S41-S50 (2007).
Schmelzer, C., Lindner, I., Rimbach, G., Niklowitz, P., Menke, T., & Döring, F. Functions of coenzyme Q10 in inflammation and gene expression. Biofactors. 32(1-4):179–183 (2008).
Lenaz, G., Fato, R., Formiggini, G., & Genova, M. L. The role of coenzyme Q in mitochondrial electron transport. Mitochondrion. 7:S8-S33.(2007).
Samimi, F., Namiranian, N., Sharifi-Rigi, A., Siri, M., Abazari, O., & Dastghaib, S. Coenzyme Q10: A Key Antioxidant in the Management of Diabetes-Induced Cardiovascular Complications-An Overview of Mechanisms and Clinical Evidence. Int J Endocrinol. 2024,2247748 (2024).
Ghafarifarsani, H., Hoseinifar, S. H., Raeeszadeh, M., Vijayaram, S., Rohani, M. F., Van Doan, H., & Sun, Y. Z. Comparative effect of chemical and green zinc nanoparticles on the Growth, Hematology, serum Biochemical, antioxidant Parameters, and immunity in serum and mucus of Goldfish, Carassius auratus (Linnaeus, 1758). Biol. Trace Elem. Res. 202(3):1264–1278 (2024).
Mahmoud, A. S., Sayed, A. E. D. H., Mahmoud, U. T., Mohammed, A. A., & Darwish, M. H. Impact of zinc oxide nanoparticles on the behavior and stress indicators of African catfish (Clarias gariepinus) exposed to heat stress. BMC Vet. Res. 20(1):474 (2024).
Abdel-Ghany, H. M., El-Sisy, D. M., & Salem, M. E. S. A comparative study of effects of Curcumin and its nanoparticles on the growth, immunity and heat stress resistance of nile tilapia (Oreochromis niloticus). Sci. Rep. 13(1):2523 (2023).
Al-Deriny, S. H., Dawood, M. A., Abou Zaid, A. A., El-Tras, W. F., Paray, B. A., Van Doan, H., & Mohamed, R. A. The synergistic effects of Spirulina platensis and Bacillus amyloliquefaciens on the growth performance, intestinal histomorphology, and immune response of nile tilapia (Oreochromis niloticus). Aquac Rep. 17, 100390 (2020).
Youssef, I. M., Saleh, E. S., Tawfeek, S. S., Abdel-Fadeel, A. A., Abdel-Razik, A. R. H., & Abdel-Daim, A. S. Effect of Spirulina platensis on growth, hematological, biochemical, and immunological parameters of nile tilapia (Oreochromis niloticus). Trop. Anim. Health Prod. 55(4), 275 (2023).
Dawood, M. A., Eweedah, N. M., El-Sharawy, M. E., Awad, S. S., Van Doan, H., & Paray, B. A. Dietary white button mushroom improved the growth, immunity, antioxidative status and resistance against heat stress in nile tilapia (Oreochromis niloticus). Aquaculture. 523, 735229 (2020).
Kim, J. H., Kim, S. K., & Hur, Y. B. Temperature-mediated changes in stress responses, acetylcholinesterase, and immune responses of juvenile Olive flounder Paralichthys Olivaceus in a bio-floc environment: 506, 453–458 (2019).
Oksala, N. K. et al. Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress. Redox Biol.: 3, 25–28 (2014).
Attia, Y. A. et al. Effects of Spirulina platensis and/or Allium sativum on antioxidant status, immune response, gut morphology, and intestinal Lactobacilli and Coliforms of heat-stressed broiler chicken. Vet. Sci.10(12), 678 (2023).
Zahran, E., Elbahnaswy, S., Ibrahim, I., & Khaled, A. A. Nannochloropsis oculata enhances immune response, transcription of stress, and cytokine genes in nile tilapia subjected to air exposure stress. Aquac. Rep. 21, 100911 (2021).
Cordiano, R., Di Gioacchino, M., Mangifesta, R., Panzera, C., Gangemi, S., & Minciullo, P. L. Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases: An update. Molecules. 28(16), 5979 (2023).
Guo, K., Zhang, R., Luo, L., Wang, S., Xu, W., & Zhao, Z. Effects of thermal stress on the antioxidant capacity, blood biochemistry, intestinal microbiota, and metabolomic responses of Luciobarbus Capito. Antioxidants. 12(1), 198 (2023).
Mahmoud, M. A., Kassab, M. S., Zaineldin, A. I., Amer, A. A., Gewaily, M. S., Darwish, S., & Dawood, M. A. Mitigation of heat stress in striped catfish (Pangasianodon hypophthalmus) by dietary allicin: exploring the growth performance, stress biomarkers, antioxidative, and immune responses. Aquac. Res. 8292007 (2023).
Zhang, C. N., Li, X. F., Tian, H. Y., Zhang, D. D., Jiang, G. Z., Lu, K. L., … Liu,W. B. Effects of fructooligosaccharide on immune response, antioxidant capability and HSP70 and HSP90 expressions of blunt snout bream (Megalobrama amblycephala) under high ammonia stress. Fish Physiol. Biochem. 41, 203–217 (2015).
Cui, Y., Liu, B., Xie, J., Xu, P., Habte-Tsion, H. M., & Zhang, Y. Effect of heat stress and recovery on viability, oxidative damage, and heat shock protein expression in hepatic cells of grass carp (Ctenopharyngodon idellus). Fish Physiol. Biochem. 40, 721–729 (2014).
Wang, Y. et al. Effects of heat stress on respiratory burst, oxidative damage and SERPINH1 (HSP47) mRNA expression in rainbow trout Oncorhynchus mykiss. Fish Physiol. Biochem. 42, 701–710 (2016).
Kumar, N., Kumar, S., Singh, A. K., Gite, A., Patole, P. B., & Thorat, S. T. Exploring the mitigating role of zinc nanoparticles on arsenic, ammonia, and temperature stress using molecular signatures in fish. J. Trace Elem. Med. Biol. 74, 127076 (2022).
Saurabh, S. et al. Lysozyme: An important defence molecule of fish innate immune system. Aquac. Res. 39(3), 223–239 (2008).
Uribe-Querol, E., & Rosales, C. Control of phagocytosis by microbial pathogens. Front. Immunol. 8, 1368 (2017).
Lee, T. H., Qiu, F., Waller, G. R., & Chou, C. H. Three new flavonol galloylglycosides from leaves of acacia confusa. J. Nat. Prod. 63(5),710–712 (2000).
Burgos-Aceves, M. A., Cohen, A., Smith, Y., & Faggio, C. Estrogen regulation of gene expression in the teleost fish immune system. Fish Shellfish Immunol. 58, 42–49 (2016).
Schairer, D. O., Chouake, J. S., Nosanchuk, J. D., & Friedman, A. J. The potential of nitric oxide-releasing therapies as antimicrobial agents. Virulence. 3(3), 271–279 (2012).
Alfonso, S., Gesto, M., & Sadoul, B. Temperature increase and its effects on fish stress physiology in the context of global warming. J. Fish Biol. 98(6), 1496–1508 (2021).
Armobin, K., Ahmadifar, E., Adineh, H., Samani, M. N., Kalhor, N., Yilmaz, S., …Van Doan, H. Quercetin Application for Common Carp (Cyprinus carpio): I. Effects on Growth Performance, Humoral Immunity, Antioxidant Status, Immune-Related Genes, and Resistance against Heat Stress. Aquac. Nutr. 1168262 (2023).
Alhussien, M. N., Hussen, J., & De Matteis, G. Editorial. Heat stress and immune responses in livestock: current challenges and intervention strategies. Front. Vet. Sci. 11 (2024).
Yang, C. et al. Exposure to heat stress causes downregulation of immune response genes and weakens the disease resistance of Micropterus salmoides. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics. 43, 101011 (2022).
Elbahnaswy, S., Elshopakey, G. E., Abdelwarith, A. A., Younis, E. M., Davies, S. J., & El-Son, M. A. Immune protective, stress indicators, antioxidant, histopathological status, and heat shock protein gene expression impacts of dietary Bacillus spp. Against heat shock in nile tilapia, Oreochromis niloticus. BMC Vet. Res. 20(1), 469 (2024).
Mahmoud, S., Sabry, A., Abdelaziz, A., & Shukry, M. Deleterious impacts of heat stress on steroidogenesis markers, immunity status and ovarian tissue of nile tilapia (Oreochromis niloticus). J. Therm. Biol. 91, 102578 (2020).
Dominguez, M., Takemura, A., Tsuchiya, M., & Nakamura, S. Impact of different environmental factors on the Circulating Immunoglobulin levels in the nile tilapia, Oreochromis niloticus. Aquaculture. 241(1–4), 491–500 (2004).
Upasani, C. D., & Balaraman, R. Protective effect of spirulina on lead induced deleterious changes in the lipid peroxidation and endogenous antioxidants in rats. Phytother. Res: An International Journal Devoted To Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 17(4), 330–334 (2003).
Rosas, V. T., Poersch, L. H., Romano, L. A., & Tesser, M. B. Feasibility of the use of spirulina in aquaculture diets. Rev. Aquacult. 11(4), 1367–1378 (2019).
Khalil, S. R., Reda, R. M., & Awad, A. Efficacy of Spirulina platensis diet supplements on disease resistance and immune-related gene expression in Cyprinus Carpio L. exposed to herbicide atrazine. Fish Shellfish Immunol. 67, 119–128 (2017).
Chen, Y. Y. et al. Spirulina elicits the activation of innate immunity and increases resistance against Vibrio alginolyticus in shrimp. Fish Shellfish Immunol. 55, 690–698 (2016).
López-Pedrera, C. et al. Therapeutic potential and immunomodulatory role of coenzyme Q10 and its analogues in systemic autoimmune diseases. Antioxidants. 10(4), 600 (2021).
Feher, J., Nemeth, E., Nagy, V., & Lengyel, G. The preventive role of coenzyme Q10 and other antioxidants in injuries caused by oxidative stress. Arch. Med. Sci. 3(4), 305–314 (2007).
Dube, E. Nanoparticle-Enhanced fish feed: benefits and challenges. Fishes 9(8), 322 (2024).
Alfons, M. S., Ibrahim, A. T. A., Harabawy, A. S., Al-Salahy, M. B., & Badr, G. Cytoprotective effect of propolis on heat stress induces alteration to histological, ultrastructural, and oxidative stress in catfish (Clarias gariepinus). Environ. Sci. Pollut. Res. 30(53), 114152–114165 (2023).
Nakano, T., Kameda, M., Shoji, Y., Hayashi, S., Yamaguchi, T., & Sato, M. Effect of severe environmental thermal stress on redox state in salmon. Redox Biol. 2,772–776 (2014).
Wang, Y., Li, C., Pan, C., Liu, E., Zhao, X., & Ling, Q. Alterations to transcriptomic profile, histopathology, and oxidative stress in liver of pikeperch (Sander lucioperca) under heat stress. Fish Shellfish Immunol. 95, 659–669 (2019).
Awad, L. Z., El-Mahallawy, H. S., Abdelnaeim, N. S., Mahmoud, M. M., Dessouki, A. A., & ElBanna, N. I. Role of dietary Spirulina platensis and betaine supplementation on growth, hematological, serum biochemical parameters, antioxidant status, immune responses, and disease resistance in nile tilapia. Fish Shellfish Immunol. 126, 122–130 (2022).
Adel, M., Sakhaie, F., Shekarabi, S. P. H., Gholamhosseini, A., Impellitteri, F., & Faggio, C. Dietary Mentha Piperita essential oil loaded in Chitosan nanoparticles mediated the growth performance and humoral immune responses in Siberian sturgeon (Acipenser baerii). Fish Shellfish Immunol. 145, 109321 (2024).
Cao, S. et al. Replacement of fishmeal by Spirulina Arthrospira platensis affects growth, immune related-gene expression in gibel carp (Carassius auratus gibelio var. CAS III), and its challenge against Aeromonas hydrophila infection. Fish Shellfish Immunol. 79, 265–273 (2018).
Ragap, H. M., Khalil, R. H., & Mutawie, H. H. Immunostimulant effects of dietary Spirulina platensis on tilapia Oreochromis niloticus. J. Appl. Pharm. 2(2), 26 (2012).
Al Mamun, M., Hossain, M. A., Saha, J., Khan, S., Akter, T., & Banu, M. R. Effects of Spirulina platensis meal as a feed additive on growth performance and immunological response of gangetic Mystus Mystus Cavasius. Aquac. Rep. 30, 101553 (2023).
Silva, M. R. O. D., M. da Silva, G., Silva, A. L. D., Lima, L. R. D., Bezerra, R. P., & Marques, D. D. A. Bioactive compounds of arthrospira spp.(Spirulina) with potential anticancer activities: a systematic review. ACS Chem. Biol. 16(11), 2057–2067 (2021).
Kaushik, P., & Chauhan, A. In vitro antibacterial activity of laboratory-grown culture of Spirulina platensis. Indian J. Microbiol. 48, 348–352 (2008).